Read Power, Sex, Suicide: Mitochondria and the Meaning of Life Online
Authors: Nick Lane
Tags: #Science, #General
nucleus 30–1, 133–5
organelles
33
, 33–4
size of 30
structure 9–11
Euler, Hans von 79
evolution:
biophilic nature of the universe 22
contingency versus convergency 23–4
gene-centred approach 192–8
macro-mutations 30
multicellular organisms 24–6
and purpose 107–8
religious view of 107, 151–2
exercise paradox (of ageing) 273, 306
Eyre-Walker, Adam 248–9
fermentation 78–9
evolution of 95–8
and phagocytosis 127
synthesis of ATP 79–80
flight, evolution of 23–4, 308–10
forensic use of mitochondria 3, 250–1
Fox, George 40
fractal model, geometry of supply networks 161–70, 171, 181 n.
Frade, José 213, 217, 218
free radicals 92, 172
formation of 140–2, 182–3
and mitochondrial mutations 278–80, 292–6
free-radical detection system 142, 310
free-radical leakage 4, 289
and ageing 272–3, 274–5, 277, 303–11
mitochondrial feedback signal 290–1, 302–3
and mitochondrial spare capacity 306–11
sexual fusion initiation 221–6
threshold for apoptosis 299–300
Galileo 175
Galton, Francis 252
gene, as unit of selection 192–8
gene number:
asexual limit 153
and sex 153, 186–7
gene sequencing:
archezoa 42–3
search for the prototype eukaryote 47–8
gene transfer:
bacterium to host
58–9
, 59–61
from mitochondria to the nucleus 16, 47, 131–2
origin of the eukaryotes
58–9
, 59–61
origin of the nucleus 134
genes 9, 10
accumulation and size increase 186–7
loss 116–17
mutation 10, 194, 200–1
see also
mitochondrial genes
genome 10
duplication or union of 108–9, 110, 197
generation of random variation 108, 109
human genome project 68, 132–3
human mitochondrial genome 16, 281
increasing the number of genes 108–9
Giardia lamblia
(intestinal parasite) 43, 47
glucose, oxidation process 72, 73, 76–7
Goldschmidt, Richard 29–30
Gould, Stephen Jay 22–3, 57, 111, 152–3, 280
Gram-negative bacteria 122–3 n.
Green, Douglas 219
Gutteridge, John 275
Hackstein, Johannes 52 n.
haemoglobin pigment 73–5
Hagelberg, Erika 249
Haldane, J. B. S 154–5, 171, 192, 271, 285, 297
Hall, Alan 102
Halliwell, Barry 275
Hamilton, William 192, 221, 234
Harden, Sir Arthur 79
Harman, Denham 274–5, 278
Harold, Franklin 92, 103, 195–6
heart disease, vulnerability to 255–6
heat production, by uncoupling respiration 92, 183–4, 254–6, 305–6
Helmholtz, Hermann von 73
Hemmingsen, A. M. 167
hermaphrodite lifestyle 232–3, 238
Heusner, Alfred 159, 167
Heyerdahl, Thor 246
histones 10, 32, 48–9
Hochachka, Peter 176
Horovitz, Bob 204
Hulbert, Tony 181
human evolution:
mitochondrial DNA studies 244–7
‘Out of Africa’ hypothesis 242–3, 246
population genetic studies 243–4
human genome project 68
nuclear mitochondrial sequences (numts) 132–3, 252 n.
human mitochondrial genome 16, 135–9, 141–4, 281
Huntington’s disease 285, 298
Hurst, Laurence 234
Hussein, Saddam, identification of 4
Hutchison, Clyde, III 235–6
Huxley, Sir Julian 175
hydrogen hypothesis (for the eukaryote progenitor) 36–7, 51–64,
54
,
58–9
, 131, 133–4, 216, 223
hydrogen sulphide, stratification of oceans 62–3
hydrogenosomes 52–3,
54
, 55–6, 144
hyperthermophiles 100
immune function, and apoptosis 204
infertility 260
male cytoplasmic sterility 238
male infertility (asthenozoospermia) 256
ooplasmic transfer 4, 240, 264
intelligence, evolution of 23, 24
iron, as a catalyst 73–4
iron-sulphur minerals, and the first cells 99–102,
101
, 103–4
isoprenes 99, 135
isoprenoids 135
Jacob, François 114
Jacobs, Howard 299–300
Jaffe, Bernard 71
Jagendorf, André 89–90
Jansen, Robert 263
Jones, Laura 38
Joule, James Prescott 73
Kalckar, Herman 80
Karr, Timothy 239
Keilin, David 74–7, 85, 209
Kennedy, Eugene 13, 72
Kerr, John 203
Khrapko, Konstantin 250
Kingsbury, B. F. 13, 72
Kirkwood, Tom 278
Kleiber, Max 159–60, 163, 167
Kleiber’s law 159–60,
160
, 163, 166–8
Knoll, Andrew 62
Konstantinidis, Konstantinos 115
Krebs, Sir Hans 76 n.
Krebs Cycle 76
Kroemer, Guido 208
Lake Mungo fossil 251–3
Larsson, Nils-Göran 299–300
Lavoisier, Antoine Laurent 71–2, 78
Lehninger, Albert 13, 72
life on earth, origin of 21, 22, 29, 103–4
lifespan:
and antioxidants 274–7
disposable soma theory 278
extension of 297–8
and fecundity 278
and metabolic rate 269–70,
271
, 272–3
see also
ageing
Linnane, Anthony 285–6
Lipmann, Fritz 80
Lohman, Karl 79
Lovelock, James 197
LUCA (Last Universal Common Ancestor) 97–9
Macauley, Vincent 249
MacMunn, Charles 74
macro-mutations 30
male cytoplasmic sterility 238
male infertility (asthenozoospermia) 256
Mandelbrot, Benoit 161
Margulis, Lynn 5, 14–16, 30, 36, 51, 124, 196–8, 213–14
Martin, Bill 36–7, 52–61, 97, 98–9, 100, 133–5
Marx, Karl 203
Maynard Smith, John 111, 120, 192, 248–9
Mayr, Ernst 197
Medawar, Peter 285, 297
membranes:
active transport systems 85–7,
87
, 92
evolution of 98–102,
101
, 103–4, 133–5
inorganic 99–102,
101
, 103–4
lipid 98–9
uses for the proton-motive force 91–2
Mendel’s laws (Mendelian inheritance) 281, 284
Merezhkovskii, Konstantine 111,
112
metabolic rate:
and ageing 158, 269–70, 272
birds 269, 270,
271
and body mass 156–61,
160
, 168–70, 173–6
ecological effects 158
evolutionary effects 158
and heat loss 159
and lifespan 269–70,
271
, 272–3
limitations of supply networks 161–6, 168–70, 181
n. link between resting and maximum rates 168–70, 180, 182, 184
marsupials 184
rats and humans compared 156–7
‘universal constant’ 159–60,
160
, 163, 166–8, 184
methanogens 28–9, 40, 48–50, 51–64,
54
Meyerhof, Otto 79
Michaelidis, Theologos 213, 217, 218
Michiels, Nico 233
microsporidia (parasitic eukaryotes) 43, 47
Miller, Stanley 95
minerals, as catalysts for early life 95, 99–102
Miquel, Jaime 278–9
Mitchell, Peter 7, 68, 84–90, 92, 123, 197 n.
mitochondria:
and aerobic capacity increase 181–2
‘anaerobic’ forms 53–5, 55–6
apoptosis enforcement 5, 191, 202, 207–12, 303
bacterial ancestry 5, 13–17, 33–4, 52–3, 55–6
chemiosmosis 7, 68, 86
division and fusion 12, 220, 294
electrical charge across the inner membrane 89
in eukaryotic cells 25–6
in the evolution of eukaryotes 5–6, 17–18, 25–6
in the evolution of size and complexity 147
forensic use of 3, 250–1
free-radical leakage and ageing 272–3, 274–5, 277
free-radical signal feedback system 142–4, 221–6, 290–1
functions of 1, 3, 13
heat and energy production 254–6
loss of independence 218–19
in mammalian organs 182
manipulation of host cell 219–21
maternal line inheritance 3, 234–41, 244, 245, 247, 261–2
names for 13
need for two sexes 6, 232–41, 261–2
numbers in different types of cells 1, 3, 4, 11–12
pH gradient across the inner membrane 89
possible parasitic ancestry 216–18
proof of existence of 12–13
relationship to hydrogenosomes 52–3
relationship to α-proteobacteria 48
retrograde response 293
sexual fusion initiation 221–6
size and structure 1, 3, 11,
12