A Brief History of Time (24 page)

Read A Brief History of Time Online

Authors: Stephen Hawking

Rather similar, seemingly absurd infinities occur in the other partial theories, but in all these cases the infinities can be canceled out by a process called renormalization. This involves canceling the infinities by introducing other infinities. Although this technique is rather dubious mathematically, it does seem to work in practice, and has been used with these theories to make predictions that agree with observations to an extraordinary degree of accuracy. Renormalization, however, does have a serious drawback from the point of view of trying to find a complete theory, because it means that the actual values of the masses and the strengths of the forces cannot be predicted from the theory, but have to be chosen to fit the observations.

In attempting to incorporate the uncertainty principle into general relativity, one has only two quantities that can be adjusted: the strength of gravity and the value of the cosmological constant. But adjusting these is not sufficient to remove all the infinities. One therefore has a theory that seems to predict that certain quantities, such as the curvature of space-time, are really infinite, yet these quantities can be observed and measured to be perfectly finite! This problem in combining general relativity and the uncertainty principle had been suspected for some time, but was finally confirmed by detailed calculations in 1972. Four years later, a possible solution, called “supergravity,” was suggested. The idea was to combine the spin-2 particle called the graviton, which carries the gravitational force, with certain other particles
of spin
3
/
2
, 1, ½, and 0. In a sense, all these particles could then be regarded as different aspects of the same “superparticle,” thus unifying the matter particles with spin ½ and
3
/
2
with the force-carrying particles of spin 0, 1, and 2. The virtual particle/antiparticle pairs of spin ½ and
3
/
2
would have negative energy, and so would tend to cancel out the positive energy of the spin 2, 1, and 0 virtual pairs. This would cause many of the possible infinities to cancel out, but it was suspected that some infinities might still remain. However, the calculations required to find out whether or not there were any infinities left uncanceled were so long and difficult that no one was prepared to undertake them. Even with a computer it was reckoned it would take at least four years, and the chances were very high that one would make at least one mistake, probably more. So one would know one had the right answer only if someone else repeated the calculation and got the same answer, and that did not seem very likely!

Despite these problems, and the fact that the particles in the supergravity theories did not seem to match the observed particles, most scientists believed that supergravity was probably the right answer to the problem of the unification of physics. It seemed the best way of unifying gravity with the other forces. However, in 1984 there was a remarkable change of opinion in favor of what are called string theories. In these theories the basic objects are not particles, which occupy a single point of space, but things that have a length but no other dimension, like an infinitely thin piece of string. These strings may have ends (the so-called open strings) or they may be joined up with themselves in closed loops (closed strings) (
Fig. 11.1
and
Fig. 11.2
). A particle occupies one point of space at each instant of time. Thus its history can be represented by a line in space-time (the “world-line”). A string, on the other hand, occupies a line in space at each moment of time. So its history in space-time is a two-dimensional surface called the world-sheet. (Any point on such a world-sheet can be described by two numbers, one specifying the time and the other the position of the point on the string.) The world-sheet of an open string is a strip: its
edges represent the paths through space-time of the ends of the string (
Fig. 11.1
). The world-sheet of a closed string is a cylinder or tube (
Fig. 11.2
): a slice through the tube is a circle, which represents the position of the string at one particular time.

Two pieces of string can join together to form a single string; in the case of open strings they simply join at the ends (
Fig. 11.3
), while in the case of closed strings it is like the two legs joining on a pair of trousers (
Fig. 11.4
). Similarly, a single piece of string can divide into two strings. In string theories, what were previously thought of as particles are now pictured as waves traveling down the string, like waves on a vibrating kite string. The emission or absorption of one particle by another corresponds to the dividing or joining together of strings. For example, the gravitational force of the sun on the earth was pictured in particle theories as being caused by the emission of a graviton by a particle in the sun and its absorption by a particle in the earth (
Fig. 11.5
). In string theory, this process corresponds to an H-shaped tube or pipe (
Fig. 11.6
) (string theory is rather like plumbing, in a way). The two vertical sides of the H correspond to the particles in the sun and the earth, and the horizontal crossbar corresponds to the graviton that travels between them.

FIGURE 11.1 AND FIGURE 11.2

FIGURE 11.3

String theory has a curious history. It was originally invented in the late 1960s in an attempt to find a theory to describe the strong force. The idea was that particles like the proton and the neutron could be regarded as waves on a string. The strong forces between the particles would correspond to pieces of string that went between other bits of string, as in a spiders web. For this theory to give the observed value of the strong force between particles, the strings had to be like rubber bands with a pull of about ten tons.

FIGURE 11.4

In 1974 Joël Scherk from Paris and John Schwarz from the California Institute of Technology published a paper in which they showed that string theory could describe the gravitational force, but only if the tension in the string were very much higher, about a thousand million million million million million million tons (1 with thirty-nine zeros after it). The predictions of the string theory would be just the same as those of general relativity on normal length scales, but they would differ at very small distances, less than a thousand million million million million millionth of a centimeter (a centimeter divided by 1 with thirty-three zeros after it). Their work did not receive much attention, however, because at just about that time most people abandoned the original string theory of the strong force in favor of the theory based on quarks and gluons, which seemed to fit much better with observations. Scherk died in tragic circumstances (he suffered from diabetes and went into a coma when no one was around to give him an injection of insulin). So Schwarz was left alone as almost the only supporter of string theory, but now with the much higher proposed value of the string tension.

FIGURE 11.5 AND FIGURE 11.6

In 1984 interest in strings suddenly revived, apparently for two reasons. One was that people were not really making much progress toward showing that supergravity was finite or that it could explain the kinds of particles that we observe. The other was the publication of a paper by John Schwarz and Mike Green of Queen Mary College, London, that showed that string theory might be able to explain the existence of particles that have a built-in left-handedness, like some of the particles that we observe. Whatever the reasons, a large number of people soon began to work on string theory and a new version was developed, the so-called heterotic string, which seemed as if it might be able to explain the types of particles that we observe.

String theories also lead to infinities, but it is thought they will all cancel out in versions like the heterotic string (though this is not yet known for certain). String theories, however, have a bigger problem: they seem to be consistent only if space-time has either ten or twenty-six dimensions, instead of the usual four! Of course, extra space-time dimensions are a commonplace of science fiction indeed, they provide an ideal way of overcoming the normal restriction of general relativity that one cannot travel faster than light or back in time (see
Chapter 10
). The idea is to take a shortcut through the extra dimensions. One can picture this in the following way. Imagine that the space we live in has only two dimensions and is curved like the surface of an anchor ring or torus (
Fig. 11.7
). If you were on one side of the inside edge of the ring and you wanted to get to a point on the other side, you would have to go round the inner edge of the ring. However, if you were able to travel in the third dimension, you could cut straight across.

FIGURE 11.7

Why don’t we notice all these extra dimensions, if they are really there? Why do we see only three space dimensions and one time dimension? The suggestion is that the other dimensions are curved up into a space of very small size, something like a million million million million millionth of an inch. This is so small that we just don’t notice it:
we see only one time dimension and three space dimensions, in which space-time is fairly flat. It is like the surface of a straw. If you look at it closely, you see it is two-dimensional (the position of a point on the straw is described by two numbers, the length along the straw and the distance round the circular direction). But if you look at it from a distance, you don’t see the thickness of the straw and it looks one-dimensional (the position of a point is specified only by the length along the straw). So it is with space-time: on a very small scale it is ten-dimensional and highly curved, but on bigger scales you don’t see the curvature or the extra dimensions. If this picture is correct, it spells bad news for would-be space travelers: the extra dimensions would be far too small to allow a spaceship through. However, it raises another major problem. Why should some, but not all, of the dimensions be curled up into a small ball? Presumably, in the very early universe all the dimensions would have been very curved. Why did one time dimension and three space dimensions flatten out, while the other dimensions remain tightly curled up?

Other books

Undead L.A. 2 by Sagliani, Devan
Firefly by Severo Sarduy
Wonderland by Stacey D'Erasmo
TouchofaDom by Madeleine Oh
Remedy Maker by Sheri Fredricks
America's Greatest 20th Century Presidents by Charles River Charles River Editors