I followed him through the entrance, down a corridor, and into an office, in which was—I believe—the director of personnel. What Dr. Luria said next stunned me: “I want you to give him whatever job he wants.”
Then he turned to me and said, “You’re a pain in the ass. There are a hundred MIT students who want to work here.”
But I got the job, and it changed my life. I worked in the laboratory of Dr. Richard Hynes, who was just an assistant professor at the time, with just one graduate student and a technician. Dr. Hynes later went on to succeed Dr. Luria as Director of the Center (MIT’s Center for Cancer Research) and to become a member of the prestigious National Academy of Sciences and one of the greatest scientists in the world. Dr. Hynes was studying a new high-molecular-weight protein, which would later be called “fibronectin.” During my work there, when I added fibronectin to transformed “cancerlike” cells, they reverted to a normal morphology. When I showed Dr. Luria the cells, he said it was the most exciting thing he had seen all week. The research I did there was eventually published in the journal
Cell
, which is among the most prestigious and well-cited scientific journals in the world.
The odd, precarious days of my childhood’s escapes were receding into a distant memory.
13
WINDMILLS OF THE MIND
One does occasionally observe a tendency for the beginning zoological textbooks to take the unwary reader by a hop, skip, and jump from the little steaming pond or the beneficent chemical crucible of the sea, into the lower world of life with such sureness and rapidity that it is easy to assume that there is no mystery about this matter at all, or, if there is, that it is a very little one.
—Loren Eiseley
C
osmologists, biologists, and evolutionists do not seem at all flabbergasted when they state that the universe—indeed the laws of nature themselves—just appeared for no reason one day. It would be well perhaps to remember the experiments of Francesco Redi, Lazzaro Spallanzani, and Louis Pasteur—basic biological experiments that put to rest the theory of spontaneous generation,
the belief that life had arisen—pop, shazam—from dead matter (as, for instance, maggots from rotting meat, frogs from mud, mice from bundles of old clothes)—and not make the same mistake for the origin of the universe itself.
But in addition to the bedrock illogic that seems to arise in classical science when tackling the fundamental questions, an additional, even more basic, problem arises. It is the dualistic nature of language, the way we think, and the limits of logic. Just as we cannot properly perceive what’s going on in the universe without incorporating the essence of perception itself, that is, consciousness, so too we cannot adequately
discuss
and
understand
the cosmos unless we have some notion of the nature and limitations of the tools used for discussion and understanding, namely language and the rational mind. After all, we are at this moment reading, and things will make sense or else fail to do so only within the matrix of the medium at hand. If the medium introduces a built-in bias, we should at least know about it.
Few pause to consider the limits of logic and language as the tools we generally employ in our quest for knowledge. As quantum theory increasingly gains ascendancy in everyday technological applications, as when we create tunneling microscopes and quantum-based computers, those actively working to find applications for its marvelous facets often confront its illogical or non-rational nature but ignore it. After all, only the math and technological applications matter to them. They have a job to do; leave
meaning
to the science philosophers. Moreover, one needn’t understand something in order to enjoy its benefits, as men standing at the altar have realized since time immemorial.
Still, the more one deals with quantum theory, the more amazing (meaning counterlogical) it becomes—even beyond the experiments discussed in earlier chapters. To illustrate this, recall that in everyday life, choices are normally narrowed down to specific possibilities. If you’re looking for your cat, it is either in the living room or not in the living room. Or, perhaps, partially in and partially out, if it is napping in the doorway. Those are the only three possibilities, and no one can conceive of any others.
But in the quantum world, when a particle or bit of light has traveled from point A to point B, and there are mirrors that allow bounces so that it can reach its destination by either of two routes, an amazing thing happens.
Careful experiments involving blockable mirrors and such show that the particle has not taken path A, nor taken path B. It also has not somehow split itself up and taken both paths, nor has it gotten there by taking neither path. Because these are the only choices we can conceive, the electron has defied logic and done something else, something that we cannot imagine. Particles doing such seemingly impossible things are said to be in a state of superposition.
Now, superpositions are routine in the real quantum universe, but they seem extraordinary because they show, without any doubt, that our ways of thinking simply don’t work in all segments of the cosmos. This is a very important realization, one that is unique in human history and inarguably one of the great revelations of the twentieth century.
The ancient Greeks, who loved logic and enjoyed exploring its contradictions, never tired of coming up with conundrums and finding paradoxes such as the Tortoise and the Hare. Here, you’ll recall, we say that the bunny runs twice as fast as the turtle, so we give the tortoise a nice one-mile head start in the two-mile race. (Those Greeks were far more likely to have used the
Stade
than the mile, but let’s not be picky.) When the hare has covered that one-mile distance to the tortoise, the latter has meanwhile advanced a half-mile ahead, because it moves at half the rabbit’s speed. When the hare closes that half-mile, the tortoise now moves ahead a quarter-mile more. While the quarter-mile is covered, the tortoise advances an additional one-eighth mile. Logically, then, the tortoise should never catch the hare. The distances will grow ever smaller, but the turtle forever remains ahead. We know this must be incorrect, and yet the logic leading to the conclusion contains no apparent fault. The Greeks also found a logical way to mathematically prove that one plus one equals three, and all manner of other wonderful stuff, likely as the result of having excessive leisure time in that wonderful Aegean climate.
Or consider this, told to a condemned man: Speak! If you lie, you will be hanged. If you tell the truth, you will be put to the sword. So the prisoner says: I will be hanged! After much tortured discussion, the jailors decide they have no choice but to release him.
Language is rife with a myriad of contradictions that we merely ignore. Ask someone what he or she thinks happens after death, and one common reply is, “I think there will just be nothing.”
Now, that seems to be a valid statement, but as we saw in a previous chapter, the verb
to be
contradicts nothingness. One can’t
be
nothing. Our frequent encounters with the term
be nothing
or
is nothing
have numbed us into imagining that it expresses something valid and logical, when in fact it says nothing comprehensible.
The point to all this is to instill a proper wariness for language and logic. Those are tools used for specific purposes, and work well for what they are intended to do, such as simple communications like
please pass the salt.
But every tool has uses and also limitations. We discover this when we find a nail sticking out of a doorjamb and want to punch it back in, but a quick search of the cabinet uncovers only a pair of pliers. We really want and need a hammer but are too lazy to spend more time looking for it, so we start hammering away using the edge of the pliers. This doesn’t work well, and soon we have bent the nail instead of driving it in. We have used the wrong tool for the job.
Logic and verbal language are the wrong tools for the job of understanding quantum theory. Math works much better (but even then merely shows us how it operates, but not why it is as it is). Logic also fails when discussing things that have no comparatives. We tell a friend how wonderfully deep blue the sky looks on this crisp autumn day, but this would of course be meaningless to a person born blind. One needs experience or comparisons with the
known
for language and thinking to be productive. One of the authors saw a T-shirt imprinted with a standard Ishihara test for color blindness, consisting of lots of little pastel-colored dots. My colorblind friend saw it only as a random, meaningless pattern, but to everyone else, the shirt said, “Fuck the colorblind.”
We are the colorblind when it comes to the deepest issues of the cosmos. Because the universe in its entirety, the sum of all nature and consciousness, has no comparative because there is nothing else like it, nor does it exist within any other matrix or context, our logic and language lack any meaningful way to apprehend or visualize it as a whole.
This profound limitation should be immediately obvious—as when people ask what the expanding universe is expanding
into
—and yet to most people it is not. This is perhaps odd, because nearly everyone has experienced language-futility or conceptual-failure, followed by a sense of frustration, such as when realizing that they’re utterly unable to conceive of infinity, or eternity, or the cosmos existing without having any boundaries of any kind or any center. Our intellects come to a standstill at the notion of a cat that is in the state of neither being in a room, nor not in the room, nor partially in and partially out. We understand that the answer is “something else,” and because such quantum experiments are replicable, they must have their own internal logic—but not one that jibes with ours.
Such language-limitation may hold true on every holistic level of the cosmos that we may ever care to explore, outside of the mechanistic and mathematical levels. We have seen that the brain/logic mechanisms we humans evolved to use for handling our common macroscopic tasks, such as ordering a cheeseburger or asking for a raise, fail to work at all when we try to grasp behaviors on the level of the very small or in comprehending things on the largest scales. And although this is both revelatory and surprising, perhaps it makes sense after all. No chemist who studied only the properties of chlorine, a poison, and sodium, an element that reacts explosively when it meets water, could have possibly guessed the properties that would be exhibited when the two combine as sodium chloride—table salt. Here suddenly we have a compound that is not only not a poison but is indispensable to life. Moreover, sodium chloride not only doesn’t react violently when it meets water, it meekly dissolves in it! This “larger reality” could not have been inferred from a mere study of the nature of its components. Similarly, if the over-arching
consciousness constitutes a kind of meta-universe, it too might well be expected to have properties unpredictable from any study of its components.
Throughout these discussions of biocentrism, several points are invariably reached in which the thinking mind reaches a blank wall beyond which lie contradictions or—worse—nothingness. Our point here is that this should never be taken as evidence that biocentrism is false, any more than the Big Bang needs to be discredited
solely
because it results in the inconceivable notion of a beginning to time. No one would claim that human birth is impossible simply because no one has the foggiest clue how that new consciousness “got there.” Mystery is never disproof. Saying that the biocentric thesis produces inconceivable aspects admittedly sounds like a cop-out, akin to a structural engineer trying to claim that he cannot know whether the proposed building will fall in a stiff wind. Who would accept that? But inquiries into the universe as a whole are, as we’ve seen, an inherently different enterprise for which our human logic system was apparently never designed or intended, just as it utterly fails in the quantum realm of the tiny. The balky nail bothers us no end, but all we’ve got is the pliers, and we have to make the best of it.
For this reason, the reader is challenged far more than in most pursuits to consider, along with the logic and evidence for biocentrism, something oddly intangible, a sort of “reading between the lines” to see if perhaps it rings true on some instinctive level. Not everyone will feel comfortable seeking knowledge by looking in unaccustomed places, turning over stones that normally stay put.
However, this is far from a novel predicament. While life is full of tangible perils and clearly dangerous behavior such as barroom brawling and marrying on impulse, few have failed at one time or another to shy away from some situation simply because it “didn’t feel right.” Conversely, no one has yet explained love—and yet few experiences are its equal when it comes to prompting behavior. Logic is routinely trumped by instinct.
Biocentrism, like everything else, has its logical limits, even as it offers far-and-away the best explanation for why things are as they are. As such, it could perhaps be viewed as a jumping-off place, not an ending of itself, but a portal to yet deeper explanations and explorations of nature and the universe.
14
A FALL IN PARADISE
T
he ten-acre island I live on is breathtaking, with the reflections of trees and flowers on the water. When I first bought the property a decade and a half ago, it was overgrown with sumacs and thickets that obscured both the water and sun. The little red house I lived in was very run-down. I remember a truck driver who unloaded some shrubs and trees one day. I was in my work clothes and covered with dirt from digging holes. The driver turned to me and said, “The guy who owns this house has obviously invested a lot of money in plants and landscaping. I don’t know why he doesn’t just tear this shit hole down and rebuild a new house.”