Read Coming of Age in the Milky Way Online
Authors: Timothy Ferris
Tags: #Science, #Philosophy, #Space and time, #Cosmology, #Science - History, #Astronomy, #Metaphysics, #History
PREFACE TO THE PERENNIAL EDITION
2. RAISING (AND LOWERING) THE ROOF
11. THE EXPANSION OF THE UNIVERSE
14. THE EVOLUTION OF ATOMS AND STARS
15. THE QUANTUM AND ITS DISCONTENTS
18. THE ORIGIN OF THE UNIVERSE
20. THE PERSISTENCE OF MYSTERY
ADDENDUM TO THE PERENNIAL EDITION
A BRIEF HISTORY OF THE UNIVERSE
One thing I have learned in a long life: that all our science, measured against reality, is primitive and childlike—and yet it is the most precious thing we have.
—Albert Einstein
The wind was flapping a temple flag, and two monks were having an argument about it. One said the flag was moving, the other that the wind was moving; and they could come to no agreement on the matter. They argued back and forth. Eno the Patriarch said, “It is not that the wind is moving; it is not that the flag is moving; it is that your honorable minds are moving.”
—Platform Sutra
The self shines in space through knowing.
—The Upanishads
You may have heard the music of Man but not the music of Earth. You may have heard the music of Earth but not the music of Heaven.
—Chuang Tzu
Had we never seen the stars, and the sun, and the heaven, none of the words which we have spoken about the universe would ever have been uttered. But now the sight of day and night, and the months and the revolutions of the years, have created number, and have given us a conception of time, and the power of enquiring about the nature of the universe; and from this source we have derived philosophy, than which no greater good ever was or will be given by the gods to mortal man.
—Plato
T
he skies of our ancestors hung low overhead. When the ancient Sumerian, Chinese, and Korean astronomers trudged up the steps of their squat stone ziggurats to study the stars, they had reason to assume that they obtained a better view that way,
not, as we would say today, because they had surmounted a little dust and turbulent air, but because they had got themselves appreciably closer to the stars. The Egyptians regarded the sky as a kind of tent canopy, supported by the mountains that demarked the four corners of the earth, and as the mountains were not all that high, neither, presumably, were the heavens; the gigantic Egyptian constellations hovered close over humankind, as proximate as a mother bending to kiss a sleeping child. The Greek sun was so nearby that Icarus had achieved an altitude of only a few thousand feet when its heat melted the wax in his wings, sending the poor boy plunging into the uncaring Aegean. Nor were the Greek stars significantly more distant; when Phaethon lost control of the sun it veered into the stars as suddenly as a swerving chariot striking a signpost, then promptly rebounded to earth (toasting the Ethiopians black on its way down).
But if our forebears had little notion of the depths of space, they were reasonably well acquainted with the two-dimensional motions of the stars and planets against the sky, and it was by studying these motions that they were led, eventually, to consider the third dimension as well. Since the days of the ancient Sumerians and probably before, there had been students of the night sky willing to devote their evening hours to the lonely business of squinting and straining to take sightings over aligned rocks or along wooden quadrants or simply across their fingers and thumbs, patiently keeping records of what they saw. It was a lot of trouble. Why did they bother?
Part of the motive may have had to do with the inchoate longing, mysterious but persistent then as now, to express a sense of human involvement with the stars. As Copernicus noted, reverence for the stars runs so deep in human consciousness that it is embedded in the language itself. “What is nobler than the heavens,” he wrote, “the heavens which contain all noble things? Their very names make this clear:
Caelum
(heavens) by naming that which is beautifully carved; and
Mundus
(world), purity and elegance.”
1
Even Socrates, though personally indifferent toward astronomy, conceded that the soul “is purified and kindled afresh” by studying the sky.
There were obvious practical incentives as well. Navigation, for one: Mariners could estimate their latitude by measuring the elevation of the pole star, and could tell time by the positions of
the stars, and these advantages were sufficiently appreciated that seafaring peoples codified them in poetry and mythology long before the advent of the written word. When Homer says that the Bear never bathes, he is passing along the seafarer’s knowledge that Ursa Major, the constellation that contains the Big Dipper, is circumpolar at Mediterranean latitudes—that is, that it never sinks beneath the ocean horizon.
Another practical motive was timekeeping. Early farmers learned to make a clock and a calendar of the moving sky, and consulted almanacs etched in wood or stone for astronomical guidance in deciding when to plant and harvest their crops. Hesiod, one of the first poets whose words were written down, emerges from the preliterate era full of advice on how to read the sky for clues to the seasons:
When great Orion rises, set your slaves
To winnowing Demeter’s holy grain
Upon the windy, well-worn threshing floor….
Then give your slaves a rest; unyoke your team.
But when Orion and the Dog Star move
Into the mid-sky, and Arcturus sees
The rosy-fingered Dawn, then Perseus, pluck
The clustered grapes, and bring your harvest home….
When great Orion sink, the time has come
To plough; and fittingly, the old year dies.
2
The hunter-gatherers who preceded the farmers also used the sky as a calendar. As a Cahuilla Indian in California told a researcher in the 1920s:
The old men used to study the stars very carefully and in this way could tell when each season began. They would meet in the ceremonial house and argue about the time certain stars would appear, and would often gamble about it. This was a very important matter, for upon the appearance of certain stars depended the season of the crops. After several nights of careful watching, when a certain star finally appeared, the old men would rush out, cry and shout, and often dance. In the spring, this gaiety was especially pronounced, for … they could now find certain plants in the mountains. They never went to the mountains until they saw a certain star, for they knew they would not find food there previously.
3
Stonehenge is one of thousands of old time-reckoning machines the moving parts of which were all in the sky. The Great Pyramid at Giza was aligned to the pole star, and it was possible to read the seasons from the position of the pyramid’s shadow. The Mayans of ancient Yucatan inscribed stone monuments with formulae useful in predicting solar eclipses and the heliacal rising of Venus (i.e., its appearance westward of the sun, as a “morning star”). The stone medicine wheels of the Plains Indians of North America ticked off the rising points of brighter stars, informing their nomadic architects when the date had come to migrate to seasonal grazing lands. The twenty-eight poles of Cheyenne and Sioux medicine lodges are said to have been used to mark the days of the lunar month: “In setting up the sun dance lodge,” said Black Elk, a priest of the Oglala Sioux, “we are really making the universe in a likeness.”
4
Political power presumably played a role in early efforts to identify periodic motions in the sky, inasmuch as what a man can predict he can pretend to control. Command of the calendar gave priests an edge in the hardball politics of the Mayans, and Christopher Columbus managed to cow the Indians of Hispaniola into providing food for his hungry crew by warning that the moon otherwise would “rise angry and inflamed to indicate the evil that God would inflict on them.” Writes Columbus’s son Ferdinand, in his journal entry for the night of February 29, 1504:
At the rising of the moon the eclipse began, and the higher the moon rose the more the eclipse increased. The Indians observed it, and were so frightened that with cries and lamentations they ran from every side to the ships, carrying provisions, and begged the Admiral by all means to intercede for them with God that he might not make them feel the effects of his wrath, and promised for the future, diligently to bring all he had need of…. From that time forward they always took care to provide us with all that was necessary, ever praising the God of the Christians.
5
But the better acquainted the prehistoric astronomers became with the periodic motions they found in the night sky, the more complicated those motions proved to be. It was one thing to learn the simple periodicities—that the moon completes a circuit of the zodiacal constellations every 28 days, the sun in 365¼ days, the visible planets (from the Greek
planetes
, for “wanderers”) at intervals
ranging from 88 days for fleet-footed Mercury to
29½
years for plodding Saturn. It was another and more baffling matter to learn that the planets occasionally stop in their tracks and move backward—in “retrograde”—and that their paths are tilted relative to one another, like a set of ill-stacked dishes, and that the north celestial pole of the earth precesses, wobbling in a slow circle in the sky that takes fully 26,000 years to complete.
*
The problem in deciphering these complexities, unrecognized at the time, was that the earth from which we view the planets is itself a planet in motion. It is because the earth orbits the sun while rotating on its tilted axis that there is a night-by-night shift in the time when any given star rises and sets at a given latitude. The earth’s precessional wobble slowly alters the position of the north celestial pole. Retrograde motion results from the combined wanderings of the earth and the other planets; we overtake the outer planets like a runner on an inside track, and this makes each appear first to advance, then to balk and retreat across the sky as the earth passes them. Furthermore, since their orbits are tilted relative to one another, the planets meander north and south as well as east and west.
These complications, though they must have seemed a curse, were in the long run a blessing to the development of cosmology, the study of the universe at large. Had the celestial motions been simple, it might have been possible to explain them solely in terms of the simple, poetic tales that characterized the early cosmologies. Instead, they proved to be so intricate and subtle that they could not be predicted accurately without eventually coming to terms with the physical reality of how and where the sun, moon, and planets actually move, in real, three-dimensional space. The truth is beautiful, but the beautiful is not necessarily true: However aesthetically pleasing it may have been for the Sumerians to imagine that the stars and planets swim back from west to east each day
via a subterranean river beneath a flat earth, such a conception was quite useless when it came to determining when Mars would go into retrograde or the moon occult Jupiter.
Retrograde motion of Mars occurs when Earth overtakes the more slowly moving outer planet, making Mars appear to move backward in the sky.