Fermat's Last Theorem (8 page)

Read Fermat's Last Theorem Online

Authors: Simon Singh

Despite the encouragement of Father Mersenne, Fermat steadfastly refused to reveal his proofs. Publication and recognition meant nothing to him and he was satisfied with the simple pleasure of being able to create new theorems undisturbed. However, the shy and retiring genius did have a mischievous streak, which, when combined with his secrecy, meant that when he did sometimes communicate with other mathematicians it was only to tease them. He would write letters stating his most recent theorem without providing the accompanying proof. Then he would challenge his contemporaries to find the proof. The fact that he would never reveal his own proofs caused a great deal of frustration. Rene Descartes called Fermat a ‘braggart' and the Englishman John Wallis referred to him as ‘That damned Frenchman'. Unfortunately for the English, Fermat took particular pleasure in toying with his cousins across the Channel.

As well as having the satisfaction of annoying his colleagues, Fermat's habit of stating a problem but hiding its solution did have more practical motivations. First, it meant that he did not have to waste time fully fleshing out his methods; instead he could rapidly proceed to his next conquest. Furthermore, he did not have to suffer jealous nit-picking. Once published, proofs would be examined and argued over by everyone and anyone who knew anything about the subject. When Blaise Pascal pressed him to publish some of his work, the recluse replied: ‘Whatever of my work is judged worthy of publication, I do not want my name to appear there.'
Fermat was the secretive genius who sacrificed fame in order not to be distracted by petty questions from his critics.

This exchange of letters with Pascal, the only occasion when Fermat discussed ideas with anyone but Mersenne, concerned the creation of an entirely new branch of mathematics – probability theory. The mathematical hermit was introduced to the subject by Pascal, and so, despite his desire for isolation, he felt obliged to maintain a dialogue. Together Fermat and Pascal would discover the first proofs and cast-iron certainties in probability theory, a subject which is inherently uncertain. Pascal's interest in the subject had been sparked by a professional Parisian gambler, Antoine Gombaud, the Chevalier de Méré, who had posed a problem which concerned a game of chance called
points.
The game involves winning points on the roll of a dice, and whichever player is the first to earn a certain number of points is the winner and takes the prize money.

Gombaud had been involved in a game of points with a fellow-gambler when they were forced to abandon the game half-way through, owing to a pressing engagement. The problem then arose as to what to do with the prize money. The simple solution would have been to have given all the money to the competitor with the most points, but Gombaud asked Pascal if there was a fairer way to divide the money. Pascal was asked to calculate the probability of each player winning had the game continued and assuming that both players would have had an equal chance of winning subsequent points. The prize money could then be split according to these calculated probabilities.

Prior to the seventeenth century the laws of probability were defined by the intuition and experience of gamblers, but Pascal entered into an exchange of letters with Fermat with the aim of discovering the mathematical rules which more accurately describe
the laws of chance. Three centuries later Bertrand Russell would comment on this apparent oxymoron: ‘How dare we speak of the laws of chance? Is not chance the antithesis of all law?'

The Frenchmen analysed Gombaud's question and soon realised that it was a relatively trivial problem which could be solved by rigorously defining all the potential outcomes of the game and assigning an individual probability to each one. Both Pascal and Fermat were capable of independently solving Gombaud's problem, but their collaboration speeded up the discovery of a solution and led them to a deeper exploration of other more subtle and sophisticated questions related to probability.

Probability problems are sometimes controversial because the mathematical answer, the true answer, is often contrary to what intuition might suggest. This failure of intuition is perhaps surprising because ‘survival of the fittest' ought to provide a strong evolutionary pressure in favour of a brain naturally capable of analysing questions of probability. You can imagine our ancestors stalking a young deer, and weighing up whether or not to attack. What is the risk that a stag is nearby ready to defend its offspring and injure its assailant? On the other hand what is the chance that a better opportunity for a meal might arise if this one is judged too risky? A talent for analysing probability should be part of our genetic makeup and yet often our intuition misleads us.

One of the most counterintuitive probability problems concerns the likelihood of sharing birthdays. Imagine a football pitch with 23 people on it, the players and the referee. What is the probability that any two of those 23 people share the same birthday? With 23 people and 365 birthdays to chose from, it would seem highly unlikely that anybody would share the same birthday. If asked to put a figure on it most people would guess a probability of perhaps 10% at most. In fact, the actual answer is just over 50% – that is to
say, on the balance of probability, it is more likely than not that two people on the pitch will share the same birthday.

The reason for this high probability is that what matters more than the number of people is the number of ways people can be paired. When we look for a shared birthday, we need to look at pairs of people not individuals. Whereas there are only 23 people on the pitch, there are 253 pairs of people. For example, the first person can be paired with any of the other 22 people giving 22 pairings to start with. Then, the second person can be paired with any of the remaining 21 people (we have already counted the second person paired with the first person so the number of possible pairings is reduced by one), giving an additional 21 pairings. Then, the third person can be paired with any of the remaining 20 people, giving an additional 20 pairings, and so on until we reach a total of 253 pairs.

The fact that the probability of a shared birthday within a group of 23 people is more than 50% seems intuitively wrong, and yet it is mathematically undeniable. Strange probabilities such as this are exactly what bookmakers and gamblers rely on in order to exploit the unwary. The next time you are at a party with more than 23 people you might want to make a wager that two people in the room will share a birthday. Please note that with a group of 23 people the probability is only slightly more than 50%, but the probability rapidly rises as the group increases in size. Hence, with a party of 30 people it is certainly worth betting that two of them will share the same birthday.

Fermat and Pascal founded the essential rules which govern all games of chance and which can be used by gamblers to define perfect playing and betting strategies. Furthermore, these laws of probability have found applications in a whole series of situations, ranging from speculating on the stock market to estimating the
probability of a nuclear accident. Pascal was even convinced that he could use his theories to justify a belief in God. He stated that ‘the excitement that a gambler feels when making a bet is equal to the amount he might win multiplied by the probability of winning it'. He then argued that the possible prize of eternal happiness has an infinite value and that the probability of entering heaven by leading a virtuous life, no matter how small, is certainly finite. Therefore, according to Pascal's definition, religion was a game of infinite excitement and one worth playing, because multiplying an infinite prize by a finite probability results in infinity.

As well as sharing the parentage of probability theory, Fermat was deeply involved in the founding of another area of mathematics, calculus. Calculus is the ability to calculate the rate of change, known as the derivative, of one quantity with respect to another. For example, the rate of change of distance with respect to time is better known simply as velocity. For mathematicians the quantities tend to be abstract and intangible but the consequences of Fermat's work were to revolutionise science. Fermat's mathematics enabled scientists to better understand the concept of velocity and its relation to other fundamental quantities such as acceleration – the rate of change of velocity with respect to time.

Economics is a subject heavily influenced by calculus. Inflation is the rate of change of price, known as the derivative of price, and furthermore economists are often interested in the rate of change of inflation, known as the second derivative of price. These terms are frequently used by politicians and the mathematician Hugo Rossi once observed the following: ‘In the fall of 1972 President Nixon announced that the rate of increase of inflation was decreasing. This was the first time a sitting president used a third derivative to advance his case for re-election.'

For centuries Isaac Newton was thought to have discovered calculus
independently and without any knowledge of Fermat's work, but in 1934 Louis Trenchard Moore discovered a note which set the record straight and gave Fermat the credit he deserves. Newton wrote that he developed his calculus based on ‘Monsieur Fermat's method of drawing tangents'. Ever since the seventeenth century calculus has been used to describe Newton's law of gravity and his laws of mechanics, which depend on distance, velocity and acceleration.

The discovery of calculus and probability theory would have been more than enough to earn Fermat a place in the mathematicians' hall of fame, but his greatest achievement was in yet another branch of mathematics. While calculus has since been used to send rockets to the moon, and while probability theory has been used for risk assessment by insurance companies, Fermat's greatest love was for a subject which is largely useless – the theory of numbers. Fermat was driven by an obsession to understand the properties of and the relationships between numbers. This is the purest and most ancient form of mathematics and Fermat was building on a body of knowledge that had been handed down to him from Pythagoras.

The Evolution of Number Theory

After Pythagoras' death the concept of mathematical proof rapidly spread across the civilised world, and two centuries after his School was burnt to the ground the hub of mathematical study had moved from Croton to the city of Alexandria. In 332
BC
, having conquered Greece, Asia Minor and Egypt, Alexander the Great decided that he would build a capital city that would be the most magnificent in the world. Alexandria was indeed a spectacular
metropolis but not immediately a centre of learning. It was only when Alexander died and his half-brother Ptolemy I ascended the throne of Egypt that Alexandria became home to the world's first-ever university. Mathematicians and other intellectuals flocked to Ptolemy's city of culture, and although they were certainly drawn by the reputation of the university, the main attraction was the Alexandrian Library.

The Library was the idea of Demetrius Phalaerus, an unpopular orator who had been forced to flee Athens, and who eventually found sanctuary in Alexandria. He persuaded Ptolemy to gather together all the great books, assuring him that the great minds would follow. Once the tomes of Egypt and Greece had been installed, agents scoured Europe and Asia Minor in search of further volumes of knowledge. Even tourists to Alexandria could not escape the voracious appetite of the Library. Upon entering the city, their books were confiscated and taken to the scribes. The books were copied so that while the original was donated to the Library, a duplicate could graciously be given to the original owner. This meticulous replication service for ancient travellers gives today's historians some hope that a copy of a great lost text will one day turn up in an attic somewhere in the world. In 1906 J.L. Heiberg discovered in Constantinople just such a manuscript,
The Method
, which contained some of Archimedes' original writings.

Ptolemy's dream of building a treasure house of knowledge lived on after his death, and by the time a few more Ptolemys had ascended the throne the Library contained over 600,000 books. Mathematicians could learn everything in the known world by studying at Alexandria, and there to teach them were the most famous academics. The first head of the mathematics department was none other than Euclid.

Euclid was born in about 330
BC
. Like Pythagoras, Euclid believed in the search for mathematical truth for its own sake and did not look for applications in his work. One story tells of a student who questioned him about the use of the mathematics he was learning. Upon completing the lesson, Euclid turned to his slave and said, ‘Give the boy a penny since he desires to profit from all that he learns.' The student was then expelled.

Euclid devoted much of his life to writing the
Elements
, the most successful textbook in history. Until this century it was also the second best-selling book in the world after the Bible. The
Elements
consists of thirteen books, some of which are devoted to Euclid's own work, and the remainder being a compilation of all the mathematical knowledge of the age, including two volumes devoted entirely to the works of the Pythagorean Brotherhood. In the centuries since Pythagoras, mathematicians had invented a variety of logical techniques which could be applied in different circumstances, and Euclid skilfully employed them all in the
Elements.
In particular Euclid exploited a logical weapon known as
reductio ad absurdum
, or proof by contradiction. The approach revolves around the perverse idea of trying to prove that a theorem is true by first assuming that the theorem is false. The mathematician then explores the logical consequences of the theorem being false. At some point along the chain of logic there is a contradiction (e.g. 2 + 2 = 5). Mathematics abhors a contradiction and therefore the original theorem cannot be false, i.e. it must be true.

The English mathematician G.H. Hardy encapsulated the spirit of proof by contradiction in his book
A Mathematician's Apology:
‘Reductio ad absurdum, which Euclid loved so much, is one of a mathematician's finest weapons. It is a far finer gambit than any chess play: a chess player may offer the sacrifice of a pawn or even a piece, but a mathematician offers the game.'

Other books

Closer Still by Jo Bannister
Ozark Retreat by Jerry D. Young
Seduced By The Lion Alpha by Bonnie Burrows
A Special Relationship by Thomas, Yvonne
Gunsmoke Justice by Louis Trimble
Desire in the Arctic by Hoff, Stacy
Direct Action by Keith Douglass
Hunting for Love by Virginia Nelson
Crisis by Ken McClure