Read Silent Spring Online

Authors: Rachel Carson

Silent Spring (26 page)

And there are other defects. Tolerances have sometimes been established against the better judgment of Food and Drug Administration scientists, as in the case cited on page 224 ff., or they have been established on the basis of inadequate knowledge of the chemical concerned. Better information has led to later reduction or withdrawal of the tolerance, but only after the public has been exposed to admittedly dangerous levels of the chemical for months or years. This happened when heptachlor was given a tolerance that later had to be revoked. For some chemicals no practical field method of analysis exists before a chemical is registered for use. Inspectors are therefore frustrated in their search for residues. This difficulty greatly hampered the work on the "cranberry chemical," aminotriazole. Analytical methods are lacking, too, for certain fungicides in common use for the treatment of seeds—seeds which if unused at the end of the planting season, may very well find their way into human food.

In effect, then, to establish tolerances is to authorize contamination of public food supplies with poisonous chemicals in order that the farmer and the processor may enjoy the benefit of cheaper production—then to penalize the consumer by taxing him to maintain a policing agency to make certain that he shall not get a lethal dose. But to do the policing job properly would cost money beyond any legislator's courage to appropriate, given the present volume and toxicity of agricultural chemicals. So in the end the luckless consumer pays his taxes but gets his poisons regardless.

What is the solution? The first necessity is the elimination of tolerances on the chlorinated hydrocarbons, the organic phosphorus group, and other highly toxic chemicals. It will immediately be objected that this will place an intolerable burden on the farmer. But if, as is now the presumable goal, it is possible to use chemicals in such a way that they leave a residue of only 7 parts per million (the tolerance for DDT), or of 1 part per million (the tolerance for parathion), or even of only 0.1 part per million as is required for dieldrin on a great variety of fruits and vegetables, then why is it not possible, with only a little more care, to prevent the occurrence of any residues at all? This, in fact, is what is required for some chemicals such as heptachlor, endrin, and dieldrin on certain crops. If it is considered practical in these instances, why not for all?

But this is not a complete or final solution, for a zero tolerance on paper is of little value. At present, as we have seen, more than 99 per cent of the interstate food shipments slip by without inspection. A vigilant and aggressive Food and Drug Administration, with, a greatly increased force of inspectors, is another urgent need.

This system, however—deliberately poisoning our food, then policing the result—is too reminiscent of Lewis Carroll's White Knight who thought of "a plan to dye one's whiskers green, and always use so large a fan that they could not be seen." The ultimate answer is to use less toxic chemicals so that the public hazard from their misuse is greatly reduced. Such chemicals already exist: the pyrethrins, rotenone, ryania, and others derived from plant substances. Synthetic substitutes for the pyrethrins have recently been developed, and some of the producing countries stand ready to increase the output of the natural product as the market may require. Public education as to the nature of the chemicals offered for sale is sadly needed. The average purchaser is completely bewildered by the array of available insecticides, fungicides, and weed killers, and has no way of knowing which are the deadly ones, which reasonably safe.

In addition to making this change to less dangerous agricultural pesticides, we should diligently explore the possibilities of non-chemical methods. Agricultural use of insect diseases, caused by a bacterium highly specific for certain types of insects, is already being tried in California, and more extended tests of this method are under way. A great many other possibilities exist for effective insect control by methods that will leave no residues on foods (see Chapter 17). Until a large-scale conversion to these methods has been made, we shall have little relief from a situation that, by any common-sense standards, is intolerable. As matters stand now, we are in little better position than the guests of the Borgias.

12. The Human Price

 

A
S
T
H
E
T
I
D
E
of chemicals born of the Industrial Age has arisen to engulf our environment, a drastic change has come about in the nature of the most serious public health problems. Only yesterday mankind lived in fear of the scourges of smallpox, cholera, and plague that once swept nations before them. Now our major concern is no longer with the disease organisms that once were omnipresent; sanitation, better living conditions, and new drugs have given us a high degree of control over infectious disease. Today we are concerned with a different kind of hazard that lurks in our environment—a hazard we ourselves have introduced into our world as our modern way of life has evolved.

The new environmental health problems are multiple—created by radiation in all its forms, born of the never-ending stream of chemicals of which pesticides are a part, chemicals now pervading the world in which we live, acting upon us directly and indirectly, separately and collectively. Their presence casts a shadow that is no less ominous because it is formless and obscure, no less frightening because it is simply impossible to predict the effects of lifetime exposure to chemical and physical agents that are not part of the biological experience of man.

"We all live under the haunting fear that something may corrupt the environment to the point where man joins the dinosaurs as an obsolete form of life," says Dr. David Price of the United States Public Health Service. "And what makes these thoughts all the more disturbing is the knowledge that our fate could perhaps be sealed twenty or more years before the development of symptoms."

Where do pesticides fit into the picture of environmental disease? We have seen that they now contaminate soil, water, and food, that they have the power to make our streams Ashless and our gardens and woodlands silent and birdless. Man, however much he may like to pretend the contrary, is part of nature. Can he escape a pollution that is now so thoroughly distributed throughout our world?

We know that even single exposures to these chemicals, if the amount is large enough, can precipitate acute poisoning. But this is not the major problem. The sudden illness or death of farmers, spraymen, pilots, and others exposed to appreciable quantities of pesticides are tragic and should not occur. For the population as a whole, we must be more concerned with the delayed effects of absorbing small amounts of the pesticides that invisibly contaminate our world.

Responsible public health officials have pointed out that the biological effects of chemicals are cumulative over long periods of time, and that the hazard to the individual may depend on the sum of the exposures received throughout his lifetime. For these very reasons the danger is easily ignored. It is human nature to shrug off what may seem to us a vague threat of future disaster. "Men are naturally most impressed by diseases which have obvious manifestations," says a wise physician, Dr. René Dubos, "yet some of their worst enemies creep on them unobtrusively."

For each of us, as for the robin in Michigan or the salmon in the Miramichi, this is a problem of ecology, of interrelationships, of interdependence. We poison the caddis flies in a stream and the salmon runs dwindle and die. We poison the gnats in a lake and the poison travels from link to link of the food chain and soon the birds of the lake margins become its victims. We spray our elms and the following springs are silent of robin song, not because we sprayed the robins directly but because the poison traveled, step by step, through the now familiar elm leaf-earthworm-robin cycle. These are matters of record, observable, part of the visible world around us. They reflect the web of life—or death—that scientists know as ecology.

But there is also an ecology of the world within our bodies. In this unseen world minute causes produce mighty effects; the effect, moreover, is often seemingly unrelated to the cause, appearing in a part of the body remote from the area where the original injury was sustained. "A change at one point, in one molecule even, may reverberate throughout the entire system to initiate changes in seemingly unrelated organs and tissues," says a recent summary of the present status of medical research. When one is concerned with the mysterious and wonderful functioning of the human body, cause and effect are seldom simple and easily demonstrated relationships. They may be widely separated both in space and time. To discover the agent of disease and death depends on a patient piecing together of many seemingly distinct and unrelated facts developed through a vast amount of research in widely separated fields.

We are accustomed to look for the gross and immediate effect and to ignore all else. Unless this appears promptly and in such obvious form that it cannot be ignored, we deny the existence of hazard. Even research men suffer from the handicap of inadequate methods of detecting the beginnings of injury. The lack of sufficiently delicate methods to detect injury before symptoms appear is one of the great unsolved problems in medicine.

"But," someone will object, "I have used dieldrin sprays on the lawn many times but I have never had convulsions like the World Health Organization spraymen—so it hasn't harmed me." It is not that simple. Despite the absence of sudden and dramatic symptoms, one who handles such materials is unquestionably storing up toxic materials in his body. Storage of the chlorinated hydrocarbons, as we have seen, is cumulative, beginning with the smallest intake. The toxic materials become lodged in all the fatty tissues of the body. When these reserves of fat are drawn upon the poison may then strike quickly. A New Zealand medical journal recently provided an example. A man under treatment for obesity suddenly developed symptoms of poisoning. On examination his fat was found to contain stored dieldrin, which had been metabolized as he lost weight. The same thing could happen with loss of weight in illness.

The results of storage, on the other hand, could be even less obvious. Several years ago the
Journal
of the American Medical Association warned strongly of the hazards of insecticide storage in adipose tissue, pointing out that drugs or chemicals that are cumulative require greater caution than those having no tendency to be stored in the tissues. The adipose tissue, we are warned, is not merely a place for the deposition of fat (which makes up about 18 per cent of the body weight), but has many important functions with which the stored poisons may interfere. Furthermore, fats are very widely distributed in the organs and tissues of the whole body, even being constituents of cell membranes. It is important to remember, therefore, that the fat-soluble insecticides become stored in individual cells, where they are in position to interfere with the most vital and necessary functions of oxidation and energy production. This important aspect of the problem will be taken up in the next chapter.

One of the most significant facts about the chlorinated hydrocarbon insecticides is their effect on the liver. Of all organs in the body the liver is most extraordinary. In its versatility and in the indispensable nature of its functions it has no equal. It presides over so many vital activities that even the slightest damage to it is fraught with serious consequences. Not only does it provide bile for the digestion of fats, but because of its location and the special circulatory pathways that converge upon it the liver receives blood directly from the digestive tract and is deeply involved in the metabolism of all the principal foodstuffs. It stores sugar in the form of glycogen and releases it as glucose in carefully measured quantities to keep the blood sugar at a normal level. It builds body proteins, including some essential elements of blood plasma concerned with blood-clotting. It maintains cholesterol at its proper level in the blood plasma, and inactivates the male and female hormones when they reach excessive levels. It is a storehouse of many vitamins, some of which in turn contribute to its own proper functioning.

Without a normally functioning liver the body would be disarmed—defenseless against the great variety of poisons that continually invade it. Some of these are normal by-products of metabolism, which the liver swiftly and efficiently makes harmless by withdrawing their nitrogen. But poisons that have no normal place in the body may also be detoxified. The "harmless" insecticides malathion and methoxychlor are less poisonous than their relatives only because a liver enzyme deals with them, altering their molecules in such a way that their capacity for harm is lessened. In similar ways the liver deals with the majority of the toxic materials to which we are exposed.

Our line of defense against invading poisons or poisons from within is now weakened and crumbling. A liver damaged by pesticides is not only incapable of protecting us from poisons, the whole wide range of its activities may be interfered with. Not only are the consequences far-reaching, but because of their variety and the fact that they may not immediately appear they may not be attributed to their true cause.

Other books

Love Over Matter by Maggie Bloom
Reindeer Games by Jet Mykles
Bite Me, Your Grace by Brooklyn Ann
King's Virgin by Adriana Hunter
What Remains of Heroes by David Benem
The Dragon in the Stone by Doris O'Connor