Spillover: Animal Infections and the Next Human Pandemic (19 page)

Read Spillover: Animal Infections and the Next Human Pandemic Online

Authors: David Quammen

Tags: #Science, #Life Sciences, #Microbiology

WHO’s eradication campaign failed. In fact, by the judgment of one historian: “
It all but destroyed malariology
. It turned a subtle and vital science dedicated to understanding and managing a complicated natural system—mosquitoes, malarial parasites and people—into a spraygun war.” After years of applying pesticides and treating cases, the healthocrats watched malaria resurge ferociously in those parts of the world, such as India, Sri Lanka (as then known), and Southeast Asia, where so much money and effort had been spent. Apart from the problem (which proved large) of acquired resistance to DDT among
Anopheles
mosquitoes, the planners and health engineers of WHO probably gave insufficient respect to another consideration—the consideration of small changes and large effects. Humans have an enormous capacity to infect mosquitoes with malaria. Miss one infected person in the surveillance-and-treatment program to eliminate malarial parasites from human hosts, and let that person be bitten by one uninfected mosquito—it all starts again. The infection spreads and, when its basic reproduction rate is greater than 1.0, it spreads quickly.

If you read the recent scientific literature of disease ecology, which is highly mathematical, and which I do not recommend unless you are deeply interested or troubled with insomnia, you find the basic reproduction rate everywhere. It’s the alpha and omega of the field, the point where infectious disease analysis starts and ends. In the equations, this variable appears as
R
0
, pronounced aloud by the cognoscenti as “R-naught.” (It’s a little confusing, I concede, that they use
R
0
as the symbol for basic
reproduction
rate and plain
R
as the symbol for
recovered
in an
SIR
model. That’s just a clumsy coincidence, reflecting the fact that both words begin with the letter R
.
)
R
0
explains and, to some limited degree, it predicts. It defines the boundary between a small cluster of weird infections in a tropical village somewhere, flaring up, burning out, and a global pandemic. It came from George MacDonald.

28

P
lasmodium falciparum
isn’t the only malarial parasite of global concern. Outside of sub-Saharan Africa, most human cases are caused by
Plasmodium vivax
, the second-worst of the four kinds adapted particularly to infecting people. (The other two,
P. ovale
and
P. malariae
, are far more rare and not nearly so virulent, causing infections that usually pass without medical treatment.)
P. vivax
is less lethal than
P. falciparum
but it does create a lot of misery, lost productivity, and inconvenience, accounting for about 80 million cases of mostly nonfatal malaria each year. Its origins have lately been elucidated, again using molecular phylogenetics, and again one of the researchers involved is Ananias A. Escalante, formerly of the CDC, now at Arizona State University. Escalante and his partners have shown that, rather than emerging from Africa along with the earliest humans, as
P. falciparum
seems to have done,
P. vivax
may have been waiting for our ancestors when they arrived to colonize Southeast Asia. The evidence suggests that its closest relatives are plasmodia infecting Asian macaques.

I’m not going to summarize this body of work, because we’re in deep enough already; but I want to alert you to one small aspect that leads off irresistibly on a peculiar tangent. Escalante’s team reported in 2005 that
P. vivax
shares a recent ancestry with three kinds of macaque malaria. One of those is
Plasmodium knowlesi
, a parasite known from Borneo and Peninsular Malaysia, where it sometimes infects at least two native primates, the long-tailed macaque and the pig-tailed macaque.
P. knowlesi
occupies a strange place in medical annals, involving the treatment of neurosyphilis (syphilis of the central nervous system), which for a time in the early twentieth century was done using induced malarial fevers.

The story goes like this. Dr. Robert Knowles was a lieutenant colonel in the Indian Medical Service, assigned to Calcutta in the 1930s and doing malaria research. In July 1931 he came into possession of an unfamiliar new strain of malarial parasite, derived from an imported monkey. It was a plasmodium
,
he could see, but not any he recognized. Knowles and a junior colleague, an assistant surgeon named Das Gupta, decided to study it. They injected the bug into several other kinds of monkey and followed the progress of infection. This mystery strain proved devastating to rhesus macaques, causing high fevers and high loads of parasites in the blood, killing the animals quickly. In bonnet macaques, though, it had little effect. Knowles and Gupta also injected it into three human volunteers (that is to say, “volunteers,” their freedom to decline having been a dubious matter), one of whom was a local man who had come to the hospital for treatment of a rat bite on his foot. This poor guy got very sick—not from the rat bite but from the injected malaria. In those experimental subjects (monkey and human) who suffered intermittent fevers, Knowles and Gupta noticed that the period of the fever cycle was one day, as distinct from the two-day or three-day cycles known for human malarias. Knowles and Gupta published a paper on the unusual parasite but didn’t give it a name. Soon afterward another set of scientists did, labeling it
Plasmodium knowlesi
in honor of its senior discoverer.

Shift of scene: to Eastern Europe. Reading the literature, a well-connected malaria researcher in Romania named Mihai Ciuca got interested in the properties and potential uses of
Plasmodium knowlesi
and wrote to one of Knowles’s colleagues in India, asking for a sample. When the monkey blood arrived, Professor Ciuca started injecting doses of
P. knowlesi
into patients with neurological syphilis. This was not nearly as crazy as it sounds, though even for Romania perhaps a little edgy, since the range of effects of
P. knowlesi
in humans was so little known. Still, Ciuca was merely following a line of therapy that had not only proven effective but had been scientifically canonized. Back in 1917 a Viennese neurologist named Julius Wagner-Juaregg had begun inoculating advanced syphilis patients with other strains of malaria, and not only had he escaped malpractice prosecution and accusations of criminal goofiness but he had also received a Nobel Prize in medicine. Wagner-Juaregg was a man of unsavory eminence in the old style, a bilious anti-Semite who advocated “racial hygiene,” favored forced sterilization for the mentally ill, and wore a Nietzschean mustache, but his “pyrotherapy” using malaria seems to have helped many neurosyphilis patients, who otherwise would have suffered out their last days in asylums. There was cold logic—revise that,
hot
logic—to Wagner-Juaregg’s mode of treatment. It worked because the syphilis bug is so sensitive to temperature.

Syphilis is caused by a spiral bacterium (aka a spirochete) known as
Treponema pallidum.
The bacterium is usually acquired during sexual contact, whereupon it corkscrews its way across mucous membranes, multiplies in the blood and lymph nodes, and, if a patient is especially unlucky, gets into the central nervous system, including the brain, causing personality change, psychosis, depression, dementia, and death. That’s in the absence of antibiotic treatment, anyway; modern antibiotics cure syphilis easily. But there were no modern antibiotics in 1917, and the early chemical treatment known as Salvarsan (containing arsenic) didn’t work well against late-stage syphilis in the nervous system. Wagner-Juaregg solved that problem after noting that
Treponema pallidum
didn’t survive in a test tube at temperatures much above 98.6 degrees Fahrenheit. Raise the blood temperature of the infected person a few degrees, he realized, and you might cook the bacterium to death. So he began inoculating patients with
Plasmodium vivax
.

He would allow them to cycle through three or four spikes of fever, delivering potent if not terminal setbacks to the
Treponema,
and then dose them with quinine, bringing the plasmodium
under control. “
The effect was remarkable
; the downward progression of late-stage syphilis was stopped,” by one account, from the late Robert S. Desowitz, who was a prominent parasitologist himself as well as a lively writer. “Institutions for malaria therapy rapidly proliferated throughout Europe and the technique was taken up in several centers in the United States. In this way, tens of thousands of syphilitics were saved from a sure and agonizing death”—saved by malaria.

One of those European institutions was in Bucharest, with Professor Ciuca its vice-director. Romania had a long history of struggles against malaria, and presumably its share of syphilis too, but Ciuca evidently felt that
Plasmodium knowlesi
might be a better weapon against neurosyphilis than other kinds of the parasite. He inoculated several hundred patients and, in 1937, reported fairly good success. His program of treatments continued until, almost twenty years later, a problem arose. Repeatedly passaging
P. knowlesi
through a series of human hosts (injecting infected blood, allowing the merozoites to multiply, and then extracting infected blood) had made Ciuca’s strain increasingly virulent—too virulent for comfort. After 170 such passages, he and his colleagues became concerned with its growing ferocity and stopped using it. That was a first cautionary signal, but still just a laboratory effect. (Passaging was necessary for replenishing a supply of the parasite, since it couldn’t be cultured in a dish or a tube; but passaging it directly through humans liberated the parasite from whatever different evolutionary pressures had been entailed in completing its life cycle within mosquitoes. It became like the protist equivalent of a designated hitter—very capable of batting, and freed from the responsibility to play outfield.) Other evidence would eventually show that
P. knowlesi
could be dangerous enough to humans in its wild form.

In March 1965, a thirty-seven-year-old American surveyor employed by the US Army Map Service spent a month in Malaysia, including five days in a forested area northeast of the capital, Kuala Lumpur. For reasons of medical privacy (and possibly other reasons too), the surveyor’s name has been occluded from the scientific literature, but his initials were BW. According to one report, BW did his work by night and slept during daylight. Hmm, stop to think: How odd for a surveyor. This wasn’t the Sahara, where daytime heat was forbidding, nighttime cool, and moonshine more convenient for activity. It was tropical forest. Why the surveyor had arranged his labors that way, or what he could have been surveying (luminescent caterpillars? bat populations? natural resources? radio waves?) has never been explained, though there’s some speculation that he was a spy. Malaysia at that time was struggling through its early years of independence, under pressure from the Communist-supported Sukarno government of nearby Indonesia, which must have made it a focus of US strategic concern; or maybe (as per one rumor) he was monitoring signals traffic from China. Anyway, for whatever political or cadastral reasons, this lone surveyor spent nights enough in the jungle to be bitten by more than a few
Anopheles
mosquitoes. He arrived back at Travis Air Force Base, in California, feeling sick—chills, fever, the sweats. What a surprise! Within three days, BW was admitted to the Clinical Center of the National Institutes of Health, in Bethesda, Maryland, and put into treatment for malaria. The NIH doctors diagnosed
Plasmodium malariae
, based on the look of the parasites in his blood smears under a microscope. But that identification was contradicted by the evidence of his fever cycle, just one day long. Then came the real surprise: Further testing revealed that he was infected with
P. knowlesi
, the monkey malaria. It wasn’t supposed to be possible. “
This occurrence,
” wrote a quartet of the doctors involved, “constitutes the first proof that simian malaria is a true zoonosis.”

It was sometimes a human infection, in other words, as well as a disease of macaques.

But the case of BW was considered anomalous, just a one-time situation resulting from quirky circumstances. Many people spend nights out in the Malaysian jungle—local villagers while hunting, for instance—but few of them are American visitors, surveying or spying or whatever, and able later to get good medical diagnoses of their feverish ailments. That’s roughly where things stood with
Plasmodium knowlesi
for thirty-five years, until two microbiologists in Malaysian Borneo, a married couple named Balbir Singh and Janet Cox-Singh, began looking into some peculiar patterns of malaria occurrence around a certain community in the Bornean interior.

29

S
ingh and Cox-Singh had arrived in Borneo by roundabout routes. He was born in Peninsular Malaysia, into a Sikh family with roots in the Punjab, and went to England for a university education. Eventually he got his PhD in Liverpool. Janet Cox came from Belfast to Liverpool, also to do a doctorate. They met at the Liverpool School of Tropical Medicine, in 1984, and found themselves sharing an interest in malaria, among other things. (The Liverpool School of Tropical Medicine, old and august, was a logical place to nurture such interest; Ronald Ross himself, after leaving the Indian Medical Service and before the Ross Institute was founded in London, had been a professor there.) Some years later, now married and with two young daughters, Singh and Cox-Singh moved back (for him) to the East: specifically, to Kelantan, on the east coast of Peninsular Malaysia. Then in 1999, offered a chance to do research under the auspices of a new medical school, they relocated to Sarawak, one of Malaysia’s two Borneo states, establishing their lab within the University of Malaysia Sarawak, in Kuching, an exotic old city on the Sarawak River. Rajah Brooke had a palace there in the mid-nineteenth century. Alfred Russel Wallace passed through. It’s a charming place if you want little backstreet hotels and riverboat commerce and Bornean jungle out your back door. Kuching means “cat,” hence the nickname “Cat City,” and at the gateway to its Chinatown sits a huge concrete feline. Singh and Cox-Singh, though, didn’t choose it for local color. They were tracking malaria. Soon after settling, they heard about some strange data coming from Kapit, a community along an upper tributary of the Rajang River in Sarawak.

Other books

Addition by Toni Jordan
Fira and the Full Moon by Gail Herman
Bloodraven by Nunn, P. L.
Mask of Flies by Eric Leitten
The Anatomy Lesson by Philip Roth
The Kid by Sapphire
Descent by MacLeod, Ken