Chapter 4 â The Westinghouse Corporation
Â
There were many days when [I] did not know where my next meal was coming from. But I was never afraid to work, I went where some men were digging a ditch ⦠[and] said I wanted to work. The boss looked at my good clothes and white hands and laughed to the others ⦠but he said, âAll right. Spit on your hands. Get in the ditch.' And I worked harder than anybody. At the end of the day I had $2.
Nikola Tesla
Â
Power stations had sprung up across America
and Europe to provide electric light at night. In the 1880s the owners saw electric motors as a way to sell power to factories and streetcar lines during the day. However, most of the power stations produced DC and Brown and Peck were a little dubious of Tesla's fixation with AC.
Other inventors had used AC to power arc lights. This was particularly popular in Europe where experimenters found they could raise or lower the voltage of an alternating current using primitive transformers. Engineers at the Ganz Company found that, at a high voltage, electricity could be distributed over long distances using thin copper wires. Then, to make it safe to use in the home, it would be stepped down using a transformer.
Â
Westinghouse and AC
In 1884,
George Westinghouse
became interested in electric lighting and hired the inventor William Stanley Jr (1858 â 1916), who had invented an incandescent lamp and a self-regulating dynamo. At first, Westinghouse thought of developing a DC system, but abandoned it as the market was already overcrowded.
For a DC system to be profitable, numerous small power stations had to be situated near to the homes and factories they served. Westinghouse saw that an AC system could provide power to towns and cities where the population was spread out, reaching a market that DC systems could not serve. There would also be considerable economies of scale by using an AC system where the voltage could be stepped up and distributed over a wider area, serving more customers. The disadvantage was that no one had yet developed a meter to measure how much each individual consumer used, nor had a serviceable AC motor been developed to provide power for factories and streetcars. Besides, Edison had dismissed AC as ânot worth the attention of practical men'.
In 1885, Westinghouse imported a
transformer
made by Lucien Gaulard and John Gibbs in London which Stanley began experimenting with. By the time Tesla presented his paper to the AIEE in May 1888, Westinghouse had already sold more AC power stations than all the other companies providing DC power put together. In response, Edison began warning that AC power was dangerous.
Â
Tesla Demonstrates AC
In his paper to the AIEE, Tesla sought to demonstrate the superiority of AC once and for all. He told the audience gathered in the lecture hall at Columbia University:
The subject which I now have the pleasure of bringing to your notice is a novel system of electric distribution and transmission of power by means of alternate currents, affording peculiar advantages, particularly in the way of motors, which I am confident will at once establish the superior adaptability of these currents to the transmission of power and will show that many results heretofore unattainable can be reached by their use; results which are very much desired in the practical operation of such systems and which cannot be accomplished by means of continuous currents â¦
In our dynamo machines, it is well known, we generate alternate currents which we direct by means of a commutator, a complicated device and, it may be justly said, the source of most of the troubles experienced in the operation of the machines. Now, the currents so directed cannot be utilized in the motor, but they must â again by means of a similar unreliable device â be reconverted into their original state of alternate currents. The function of the commutator is entirely external, and in no way does it affect the internal working of the machines. In reality, therefore, all machines are alternate current machines, the currents appearing as continuous only in the external circuit during their transit from generator to motor.
After the lecture, Tesla demonstrated that his AC motor could be instantly reversed. He provided precise calculations on how the speed and power of the motor could be determined, and he showed how his system could be married up to DC apparatus.
Professor Anthony said that, in his test, he had found Tesla's motors 50 â 60 per cent more efficient than DC models. Then arc-lighting pioneer Elihu Thomson (1853 â 1937) stepped forward to say that he had already developed an AC motor. However, his still used a commutator and was consequently inefficient. Tesla pointed this out and earned himself a life-long enemy, while he himself was catapulted to fame.
Â
Selling the AC Motor Patents
Brown and Peck now invited bids on Tesla's patents. Westinghouse expressed an interest, only to be told that a Californian syndicate had offered $200,000 plus $2.50 per horsepower for each motor installed. The terms were monstrous, but without the patents it would be impossible for Westinghouse to develop a motor of his own.
âThe price seems rather high, but if it is the only method for operating a motor by alternating current, and if it is applicable to a streetcar work,' Westinghouse wrote, âwe can unquestionably easily get from the users of the apparatus whatever tax is put upon it by the inventors.'
On 7 July 1888, Westinghouse agreed to pay $25,000 in cash, $50,000 in notes and a royalty of $2.50 per horsepower for each motor. Westinghouse also guaranteed that the royalties would be at least $5,000 in the first year, $10,000 in the second year and $15,000 a year from then on. Brown and Peck were also reimbursed the money they had paid out on the development of the motors. Over 10 years Tesla, Brown and Peck stood to make $200,000 and $315,000 over the 17-year lifetime of the patents.
As Brown and Peck had negotiated this shrewd deal, as well as bearing the financial risk of developing the motors, Tesla gave them five-ninths of the deal, keeping four-ninths for himself.
Â
Moving to Pittsburgh
Later that month, Tesla took the train to Pittsburgh to put his motors into production at Westinghouse's factory, where he met the great man himself. Later Tesla paid tribute to George Westinghouse, saying on his death:
The first impressions are those to which we cling most in later life. I like to think of George Westinghouse as he appeared to me in 1888, when I saw him for the first time. The tremendous potential energy of the man had only in part taken kinetic form, but even to a superficial observer the latent force was manifest. A powerful frame, well proportioned, with every joint in working order, an eye as clear as a crystal, a quick and springy step â he presented a rare example of health and strength. Like a lion in a forest, he breathed deep and with delight the smoky air of his factories. Though past 40 then, he still had the enthusiasm of youth. Always smiling, affable and polite, he stood in marked contrast to the rough and ready men I met. Not one word which would have been objectionable, not a gesture which might have offended â one could imagine him as moving in the atmosphere of a court, so perfect was his bearing in manner and speech. And yet no fiercer adversary than Westinghouse could have been found when he was aroused. An athlete in ordinary life, he was transformed into a giant when confronted with difficulties which seemed insurmountable. He enjoyed the struggle and never lost confidence. When others would give up in despair he triumphed. Had he been transferred to another planet with everything against him he would have worked out his salvation. His equipment was such as to make him easily a position of captain among captains, leader among leaders. His was a wonderful career filled with remarkable achievements. He gave to the world a number of valuable inventions and improvements, created new industries, advanced the mechanical and electrical arts and improved in many ways the conditions of modern life. He was a great pioneer and builder whose work was of far-reaching effect on his time and whose name will live long in the memory of men.
Â
Tesla's Task
Founded in 1886, the Westinghouse Electric Company made $800,000 in 1887 and over $3 million in 1888, despite expensive legal battles with Edison. Even so, Tesla took no salary while he worked there. He did this on principle, he said. Since he devoted himself to scientific research, he would never accept fees or compensations for his professional services. However, after a year, he was given a 150 shares of capital stock and he was given $10,000 when he discovered that Bessemer steel made a better transformer core than soft iron.
In New York, he had lived in a garden apartment. In Pittsburgh, he got his first taste of living in grand hotels.
Tesla's task in Pittsburgh was to adapt his motors, which ran best at 50 or 60 cycles per second, to the 133 cycles per second used by the Gaulard-Gibbs transformer at the 120 power stations Westinghouse had already set up. They used this higher frequency to prevent the lights flickering. Since Westinghouse's chief electrician, Oliver B. Shallenberger (1860 â 98), had adapted an electrical meter to run at this frequency, it was reasonable to believe that Tesla's motors could be adapted too. Tesla also had the problem of adapting his motors to run on the two-wire system used by Westinghouse power stations, rather than the four or six wires used to provide out-of-phase AC current to his prototypes.
Â
Encountering Nikola Tesla
At Westinghouse, Tesla's assistant, was to be Charles Scott (1864 â 1944) who admitted that he had only learned that there was such a thing as alternating current in 1887 after reading an article written by William Stanley in
Electrical World
.
âI had graduated from college two years earlier, and I wondered why I had not heard of such things from my professors,' said Scott. Now, a year later, he was to meet Tesla himself. âThere he came, marching down the aisle with head and shoulders erect and with a twinkle in his eye. It was a great moment for me,' he said. Scott would later become a Professor of Engineering at Yale, but in Pittsburgh he was âTesla's wireman ⦠preparing and making tests'. He recalled:
It was a splendid opportunity for a beginner, this coming in contact with a man of such eminence, rich in ideas, kindly and friendly in disposition. Tesla's fertile imagination often constructed air castles which seemed prodigious. But, I doubt whether even his extravagant expectations for the toy motor of those days measured up to actual realization ⦠for the polyphase system which it inaugurated ⦠exceeded the wildest dreams of the early days.
Â
The War of the Currents
With the successful introduction of Westinghouse's AC system, Edison, who was still wedded to DC, was on the back foot and a full-scale industrial war broke out. He launched an all-out propaganda onslaught on the dangers of alternating current. Westinghouse, who would be the eventual victor, said:
I remember Tom [Edison] telling them that direct current was like a river flowing peacefully to the sea, while alternating current was like a torrent rushing violently over a precipice. Imagine that! Why they even had a professor named
Harold Brown who went around talking to audiences
... and electrocuting dogs and old horses right on stage, to show how dangerous alternating current was.
Â
Replacing the Hangman
Having collected a list of over 80 casualties, Harold P. Brown was concerned over the safety of electricity. At the School of Mines, part of Columbia University in New York City, he began experimenting with animals to show that AC was more dangerous than DC. In December 1888, Edison brought Brown out to Menlo Park to electrocute animals with AC as part of his propaganda war.
A number of cities began using electricity to clear their dog pounds. New York went a step further and set up a commission, under the auspices of the Medico-Legal Society of New York to see whether electricity could be used for capital punishment. Brown became the official state electrical execution expert. The guinea pig was to be William Kemmler, a 30-year-old alcoholic who had killed his common-law wife with a hatchet. Edison testified to the committee. The following day the
New-York Daily Tribune
carried the headline: âEdison Says It Will Kill, The Wizard Testifies As An Expert In The Kemmler Case, He Thinks An Artificial Current Can Be Generated Which Will Produce Death Instantly And Painlessly In Every Case â One Thousand Volts Of An Alternating Current Would Be Sufficient.' The
Electrical Review
detailed Edison's proposed method:
He proposes to manacle the wrists, with chain connections, place ⦠the culprit's hand in a jar of water diluted with caustic potash and connect therein ⦠to a thousand volts of alternating current ⦠place the black cap on the condemned, and at a proper time close the circuit. The shock passes through both arms, the heart and the base of the brain, and death is instantaneous and painless.
Brown surreptitiously bought some Westinghouse motors and began experimenting with larger animals. In Edison's laboratory he âWestinghoused' 24 dogs, bought from local children at 25 cents each, while Edison himself âWestinghoused' two calves and a horse. After this demonstration,
The New York Times
reported: âThe experiments proved the alternating current to be the most deadly force known to science, and that less than half the pressure used in this city for electric lighting by this system is sufficient to cause instant death. After Jan. 1 the alternating current will undoubtedly drive the hangman out of business in this State.'
Â
Electrical Challenge
George Westinghouse wrote to
The New York Times
in protest. Brown responded by using the letters page to draw attention to Westinghouse's âpecuniary interests' in âdeath-dealing alternating current' and issued a challenge: