The Blind Watchmaker (17 page)

Read The Blind Watchmaker Online

Authors: Richard Dawkins

Tags: #Science, #Life Sciences, #Evolution, #General

In this case we can be absolutely certain that the two bird species have invented echolocation independently of bats, and independently of each other. The line of reasoning is of a kind that evolutionists frequently use. We look at all the thousands of species of birds, and observe that the vast majority of them don’t use echolocation. Just two isolated little genera of birds do it, and those two have nothing else in common with each other except that both live in caves. Although we believe that all birds and bats must have a common ancestor if we trace their lineages back far enough, that common ancestor was also the common ancestor of all mammals (including ourselves) and all birds. The vast majority of mammals and the vast majority of birds don’t use echolocation, and it is highly probable that their common ancestor didn’t either (nor did it fly - that is another technology that has been independently evolved several times). It follows that the echolocation technology has been independently developed in bats and birds, just as it was independently developed by British, American and German scientists. The same kind of reasoning, on a smaller scale, leads to the conclusion that the common ancestor of the oilbird and the cave swiftlet also did not use echolocation, and that these two genera have developed the same technology independently of each other.

Within the mammals too, bats are not the only group to have independently developed the echolocation technology. Several different kinds of mammals, for instance shrews, rats and seals, seem to use echoes to a small extent, as blind humans do, but the only animals to rival bats in sophistication are whales. Whales are divided into two main groups, toothed whales and baleen whales. Both, of course, are mammals descended from land-dwelling ancestors, and they may well have ‘invented’ the whale way of life independently of one another, starting from different land-dwelling ancestors. The toothed whales include sperm whales, killer whales and the various species of dolphins, all of which hunt relatively large prey such as fish and squids, which they catch in their jaws. Several toothed whales, of which only dolphins have been thoroughly studied, have evolved sophisticated echo-sounding equipment in their heads.

Dolphins emit rapid trains of highpitched clicks, some audible to us, some ultrasonic. It is probable that the ‘melon’, the bulging dome on the front of a dolphin’s head, looking - pleasing coincidence - like the weirdly bulging radar dome of a Nimrod ‘advance-warning’ surveillance aircraft, has something to do with beaming the sonar signals forwards, but its exact workings are not understood. As in the case of bats, there is a relatively slow ‘cruising rate’ of clicking, rising to a high-speed (400 clicks per second) buzz when the animal is closing in on prey. Even the ‘slow’ cruising rate is pretty fast. The river dolphins that live in muddy water are probably the most skilled echolocators, but some open-sea dolphins have been shown in tests to be pretty good too. An Atlantic bottlenose dolphin can discriminate circles, squares and triangles (all of the same standardized area), using only its sonar. It can tell which of two targets is the nearer, when the difference is only 1\4 inches at an overall distance of about 7 yards. It can detect a steel sphere half the size of a golf ball, at a range of 70 yards. This performance is not quite as good as human vision in a good light, but probably better than human vision in moonlight.

The intriguing suggestion has been made that dolphins, if they chose to use it, have a potentially effortless means of communicating ‘mental pictures’ to one another. All that they would have to do is use their highly versatile voices to mimic the pattern of sound that would be produced by echoes from a particular object. In this way they could convey to one another mental pictures of such objects. There is no evidence for this delightful suggestion. Theoretically, bats could do the same thing, but dolphins seem more likely candidates because they are in general more social. They are also probably ‘cleverer’, but this isn’t necessarily a relevant consideration. The instruments that would be needed for communicating echo pictures are no more sophisticated than the instruments that both bats and dolphins already have for echolocating in the first place. And there would seem to be an easy, gradual continuum between using the voice to make echoes and using it to mimic echoes.

At least two groups of bats then, two groups of birds, toothed whales, and probably several other kinds of mammals to a smaller extent, have all independently converged on the technology of sonar, at some time during the last hundred million years. We have no way of knowing whether any other animals now extinct - pterodactyls perhaps? - also evolved the technology independently.

No insects and no fish have so far been found to use sonar, but two quite different groups of fish, one in South America and one in Africa, have developed a somewhat similar navigation system, which appears to be just about as sophisticated and which can be seen as a related, but different, solution to the same problem. These are so-called weakly electric fish. The word ‘weakly’ is to differentiate them from strongly electric fish, which use electric fields, not to navigate, but to stun their prey. The stunning technique, incidentally, has also been independently invented by several unrelated groups of fish, for example electric ‘eels’ (which are not true eels but whose shape is convergent on true eels) and electric rays.

The South American and the African weakly electric fish are quite unrelated to each other, but both live in the same kinds of waters in their respective continents, waters that are too muddy for vision to be effective. The physical principle that they exploit - electric fields in water - is even more alien to our consciousness than that of bats and dolphins. We at least have a subjective idea of what an echo is, but we have almost no subjective idea of what it might be like to perceive an electric field. We didn’t even know of the existence of electricity until a couple of centuries ago. We cannot as subjective human beings empathize with electric fish, but we can, as physicists, understand them.

It is easy to see on the dinner plate that the muscles down each side of any fish are arranged as a row of segments, a
battery
of muscle units. In most fish they contract successively to throw the body into sinuous waves, which propel it forwards. In electric fish, both strongly and weakly electric ones, they have become a battery in the electric sense. Each segment (‘cell’) of the battery generates a voltage. These voltages are connected up in series along the length of the fish so that, in a strongly electric fish such as an electric eel, the whole battery generates as much as 1 amp at 650 volts. An electric eel is powerful enough to knock a man out. Weakly electric fish don’t need high voltages or currents for their purposes, which are purely informationgathering ones.

The principle of electrolocation, as it has been called, is fairly well understood at the level of physics though not, of course, at the level of what it feels like to be an electric fish. The following account applies equally to African and South American weakly electric fish: the convergence is that thorough. Current flows from the front half of the fish, out into the water in lines that curve back and return to the tail end of the fish. There are not really discrete ‘lines’ but a continuous ‘field’, an invisible cocoon of electricity surrounding the fish’s body. However, for human visualization it is easiest to think in terms of a family of curved lines leaving the fish through a series of portholes spaced along the front half of the body, all curving round in the water and diving into the fish again at the tip of its tail. The fish has what amounts to a tiny voltmeter monitoring the voltage at each ‘porthole’. If the fish is suspended in open water with no obstacles around, the lines are smooth curves. The tiny voltmeters at each porthole all register the voltage as ‘normal’ for their porthole. But if some obstacle appears in the vicinity, say a rock or an item of food, the lines of current that happen to hit the obstacle will be changed. This will change the voltage at any porthole whose current line is affected, and the appropriate voltmeter will register the fact. So in theory a computer, by comparing the pattern of voltages registered by the voltmeters at all the portholes, could calculate the pattern of obstacles around the fish. This is apparently what the fish brain does. Once again, this doesn’t have to mean that the fish are clever mathematicians. They have an apparatus that solves the necessary equations, just as our brains unconsciously solve equations every time we catch a ball.

It is very important that the fish’s own body is kept absolutely rigid. The computer in the head couldn’t cope with the extra distortions that would be introduced if the fish’s body were bending and twisting like an ordinary fish. Electric fish have, at least twice independently, hit upon this ingenious method of navigation, but they have had to pay a price: they have had to give up the normal, highly efficient, fish method of swimming, throwing the whole body into serpentine waves. They have solved the problem by keeping the body stiff as a poker, but they have a single long fin all the way along the length of the body. Then instead of the whole body being thrown into waves, just the long fin is. The fish’s progress through the water is rather slow, but it does move, and apparently the sacrifice of fast movement is worth it: the gains in navigation seem to outweigh the losses in speed of swimming. Fascinatingly, the South American electric fish have hit upon almost exactly the same solution as the African ones, but not quite. The difference is revealing. Both groups have developed a single long fin that runs the whole length of the body, but in the African fish it runs along the back whereas in the South American fish it runs along the belly. This kind of difference in detail is very characteristic of convergent evolution, as we have seen. It is characteristic of convergent designs by human engineers too, of course.

Although the majority of weakly electric fish, in both the African and the South American groups, give their electric discharges in discrete pulses and are called ‘pulse’ species, a minority of species in both groups do it a different way and are called ‘wave’ species. I shall not discuss the difference further. What is interesting for this chapter is that the pulse\wavg split has evolved twice, independently, in the unrelated New World and Old World groups.

One of the most bizarre examples of convergent evolution that I know concerns the so-called periodical cicadas. Before getting to the convergence, I must fill in some background information. Many insects have a rather rigid separation between a juvenile feeding stage, in which they spend most of their lives, and a relatively brief adult reproducing stage. Mayflies, for instance, spend most of their lives as underwater feeding larvae, then emerge into the air for a single day into which they cram the whole of their adult lives. We can think of the adult as analogous to the ephemeral winged seed of a plant like a sycamore, and the larva as analogous to the main plant, the difference being that sycamores make many seeds and shed them over many successive years, while a mayfly larva gives rise to only one adult right at the end of its own life. Anyway, periodical cicadas have carried the mayfly trend to an extreme. The adults live for a few weeks, but the ‘juvenile’ stage (technically ‘nymphs’ rather than larvae) lasts for 13 years (in some varieties) or 17 years (in other varieties). The adults emerge at almost exactly the same moment, having spent 13 (or 17) years cloistered underground. Cicada plagues, which occur in any given area exactly 13 (or 17) years apart, are spectacular eruptions that have led to their incorrectly being called ‘locusts’ in vernacular American speech. The varieties are known, respectively, as 13-year cicadas and 17-year cicadas.

Now here is the really remarkable fact. It turns out that there is not just one 13-year cicada species and one 17-year species. Rather, there are three species, and each one of the three has both a 17-year and a 13-year variety or race. The division into a 13-year race and a 17-year race has been arrived at independently, no fewer than three times. It looks as though the intermediate periods of 14, 15 and 16 years have been shunned convergently, no fewer than three times. Why? We don’t know. The only suggestion anyone has come up with is that what is special about 13 and 17, as opposed to 14, 15 and 16, is that they are prime numbers. A prime number is a number that is not exactly divisible by any other number. The idea is that a race of animals that regularly erupts in plagues gains the benefit of alternately ‘swamping’ and starving its enemies, predators or parasites. And if these plagues are carefully timed to occur a prime number of years apart, it makes it that much more difficult for the enemies to synchronize their own life cycles. If the cicadas erupted every 14 years, for instance, they could be exploited by a parasite species with a 7-year life cycle. This is a bizarre idea, but no more bizarre than the phenomenon itself. We really don’t know what is special about 13 and 17 years. What matters for our purposes here is that there must be
something
special about those numbers, because three different species of cicada have independently converged upon them.

Examples of convergence on a large scale occur when two or more continents are isolated from one another for a long time, and a parallel range of ‘trades’ is adopted by unrelated animals on each of the continents. By ‘trades’ I mean ways of making a living, such as burrowing for worms, digging for ants, chasing large herbivores, eating leaves up trees. A good example is the convergent evolution of a whole range of mammal trades in the separate continents of South America, Australia, and the Old World.

These continents weren’t always separate. Because our lives are measured in decades, and even our civilizations and dynasties are measured only in centuries, we are accustomed to thinking of the map of the world, the outlines of the continents, as fixed. The theory that continents drifted about was proposed long ago by the German geophysicist Alfred Wegener, but most people laughed at him until well after the Second World War. The admitted fact that South America and Africa look a bit like separated pieces of a jigsaw puzzle was assumed to be just an amusing coincidence. In one of the most rapid and complete revolutions science has known, the formerly controversial theory of ‘continental drift’ has now become universally accepted under the name of plate tectonics. The evidence that the continents have drifted, that South America did indeed break away from Africa for instance, is now literally overwhelming, but this is not a book about geology and I shall not spell it out. For us the important point is that the timescale on which continents have drifted about is the same slow timescale on which animal lineages have evolved, and we cannot ignore continental drift if we are to understand the patterns of animal evolution on those continents.

Other books

Song of the Sea Maid by Rebecca Mascull
The Yellow Admiral by Patrick O'Brian
Twilight's Eternal Embrace by Nutt, Karen Michelle
Make Me Love You by Johanna Lindsey
The Ingredients of Love by Nicolas Barreau
50 Psychology Classics by Tom Butler-Bowdon
The Minstrel's Melody by Eleanora E. Tate
Star Chamber Brotherhood by Fleming, Preston