The Magic of Reality (2 page)

Read The Magic of Reality Online

Authors: Richard Dawkins

The third meaning of magic is the one I mean in my title: poetic magic. We are moved to tears by a beautiful piece of music and we describe the performance as ‘magical’. We gaze up at the stars on a dark night with no moon and no city lights and, breathless with joy, we say the sight is ‘pure magic’. We might use the same word to describe a gorgeous sunset, or an alpine landscape, or a rainbow against a dark sky. In this sense, ‘magical’ simply means deeply moving, exhilarating: something that gives us goose bumps, something that makes us feel more fully alive. What I hope to show you in this book is that reality – the facts of the real world as understood through the methods of science – is magical in this third sense, the poetic sense, the good to be alive sense.

Now I want to return to the idea of the supernatural and explain why it can never offer us a true explanation of the things we see in the world and universe around us. Indeed, to claim a supernatural explanation of something is not to explain it at all and, even worse, to rule out any possibility of its ever being explained. Why do I say that? Because anything
‘supernatural’
must by definition be beyond the reach of a natural explanation. It must be beyond the reach of science and the well-established, tried and tested scientific method that has been responsible for the huge advances in knowledge we have enjoyed over the last 400 years or so. To say that something happened supernaturally is not just to say ‘We don’t understand it’ but to say ‘We will never understand it, so don’t even try.’

Science takes exactly the opposite approach. Science thrives on its inability – so far – to explain everything, and uses that as the spur to go on asking questions, creating possible models and testing them, so that we make our way, inch by inch, closer to the truth. If something were to happen that went against our current understanding of reality, scientists would see that as a challenge to our present model, requiring us to abandon or at least change it. It is through such adjustments and subsequent testing that we approach closer and closer to what is true.

What would you think of a detective who, baffled by a murder, was too lazy even to try to work at the problem and instead wrote the mystery off as ‘supernatural’? The whole history of science shows us that things once thought to be the result of the supernatural – caused by gods (both happy and angry), demons, witches, spirits, curses and spells – actually do have natural explanations: explanations that we can understand and test and have confidence in. There is absolutely no reason to believe that those things for which science does not
yet
have natural explanations will turn out to be of supernatural origin, any more than volcanoes or
earthquakes
or diseases turn out to be caused by angry deities, as people once believed they were.

Of course, no one really believes that it would be possible to turn a frog into a prince (or was it a prince into a frog? I can never remember) or a pumpkin into a coach, but have you ever stopped to consider
why
such things would be impossible? There are various ways of explaining it. My favourite way is this.

Frogs and coaches are complicated things, with lots of parts that need to be put together in a special way, in a special pattern that can’t just happen by accident (or by a wave of a wand). That’s what ‘complicated’ means. It is very difficult to make a complicated thing like a frog or a coach. To make a coach you need to bring all the parts together in just the right way. You need the skills of a carpenter and other craftsmen. Coaches don’t just happen by chance or by snapping your fingers and saying ‘Abracadabra’. A coach has structure, complexity, working parts: wheels and axles, windows and doors, springs and padded seats. It would be relatively easy to turn something complicated like a coach into something simple – like ash, for instance: the fairy godmother’s wand would just need a built-in blowtorch. It is easy to turn almost anything into ash. But no one could take a pile of ash – or a pumpkin – and turn it into a coach, because a coach is too complicated; and not just complicated, but complicated
in a useful direction
: in this case, useful for people to travel in.

Let’s make it a bit easier for the fairy godmother by supposing that, instead of calling for a pumpkin, she had called for all the
parts
you need for assembling a coach, all
jumbled
together in a box: a sort of Ikea kit for a coach. The kit for making a coach consists of hundreds of planks of wood, panes of glass, rods and bars of iron, wads of padding and sheets of leather, along with nails, screws and pots of glue to hold things together. Now suppose that, instead of reading the instructions and joining the parts in an orderly sequence, she just put all the bits into a great big bag and shook them up. What are the chances that the parts would happen to stick themselves together in just the right way to assemble a working coach? The answer is – effectively zero. And a part of the reason for that is the massive number of
possible
ways in which you could combine the shuffled bits and pieces which would not result in a working coach – or a working
anything
.

If you take a load of parts and shake them around at random, they may just occasionally fall into a pattern that is useful, or that we otherwise recognize as somehow special. But the number of ways in which that can happen is tiny: very tiny indeed compared with the number of ways in which they will fall into a pattern that we don’t recognize as anything more than a heap of junk. There are millions of ways of shuffling and reshuffling a heap of bits and pieces: millions of ways of transforming them into … another heap of bits and pieces. Every time you shuffle them, you get a unique heap of junk that has never been seen before – but only a tiny minority of those millions of possible heaps will do anything useful (such as taking you to the ball) or will be remarkable or memorable in any way.

Sometimes we can literally count the number of ways
you
can reshuffle a series of bits – as with a pack of cards, for instance, where the ‘bits’ are the individual cards.

Suppose the dealer shuffles the pack and deals them out to four players, so that they each have 13 cards. I pick up my hand and gasp in astonishment. I have a complete hand of
13 spades
! All the spades.

I am too startled to go on with the game, and I show my hand to the other three players, knowing they will be as amazed as I am.

But then, one by one, each of the other players lays his cards on the table, and the gasps of astonishment grow with each hand. Every one of them has a ‘perfect’ hand: one has 13 hearts, another has 13 diamonds, and the last one has 13 clubs.

Would this be supernatural magic? We might be tempted to think so. Mathematicians can calculate the chance of such a remarkable deal happening purely by chance. It turns out to be almost impossibly small: 1 in 53,644,737,765,488,792, 839,237,440,000. If you sat down and played cards for a trillion years, you might on one occasion get a perfect deal like that. But – and here’s the thing – this deal is no more unlikely than
every other deal of cards that has ever happened!
The chance of
any
particular deal of 52 cards is 1 in 53,644,737,765,488,792, 839,237,440,000 because that is the total number of all possible deals. It is just that we don’t notice any particular pattern in the vast majority of deals that are made, so they don’t strike us as anything out of the ordinary. We only notice the deals that happen to stand out in some way.

There are billions of things you could turn a prince into, if you were brutal enough to rearrange his bits into billions of combinations at random. But most of those combinations would look like a mess – like all those billions of meaningless, random hands of cards that have been dealt. Only a tiny minority of those possible combinations of randomly shuffled prince-bits would be recognizable or good for anything at all, let alone a frog.

Princes don’t turn into frogs, and pumpkins don’t turn into coaches, because frogs and coaches are complicated things whose bits could have been combined into an almost infinite number of heaps of junk. And yet we know, as a fact, that every living thing – every human, every crocodile, every blackbird, every tree and even every Brussels sprout – has evolved from other, originally simpler forms. So isn’t
that
just a process of luck, or a kind of magic? No! Absolutely not! This is a very common misunderstanding, so I want to explain right now why what we see in real life is not the result of chance or luck or anything remotely ‘magical’ at all (except, of course, in the strictly poetic sense of something that fills us with awe and delight).

The slow magic of evolution

To turn one complex organism into another complex organism in a single step – as in a fairytale – would indeed be beyond the realms of realistic possibility. And yet complex organisms
do
exist. So how did they arise? How, in reality, did complicated things like frogs and lions, baboons and banyan trees, princes and pumpkins, you and me come into existence?

For most of history that was a baffling question, which no one could answer properly. People therefore invented stories to try to explain it. But then the question was answered – and answered brilliantly – in the nineteenth century, by one of the greatest scientists who ever lived, Charles Darwin. I’ll use the rest of this chapter to explain his answer, briefly, and in different words from Darwin’s own.

The answer is that complex organisms – like humans, crocodiles and Brussels sprouts – did not come about suddenly, in one fell swoop, but gradually, step by tiny step, so that what was there after each step was only a little bit different from what was already there before. Imagine you wanted to create a frog with long legs. You could give yourself a good start by beginning with something that was already a bit like what you wanted to achieve: a frog with short legs, say. You would look over your short-legged frogs and measure their legs. You’d pick a few males and a few females that had slightly longer legs than most, and you’d let them mate together, while preventing their shorter-legged friends from mating at all.

The longer-legged males and females would make tadpoles together, and these would eventually grow legs and become frogs. Then you’d measure this new generation of frogs, and once again pick out those males and females that had longer-than-average legs, and put them together to mate.

After doing this for about 10 generations, you might start to notice something interesting. The average leg length of your population of frogs would now be noticeably longer than the average leg length of the starting population. You
might
even find that
all
the frogs of the 10th generation had longer legs than any of the frogs of the first generation. Or 10 generations might not be enough to achieve this: you might need to go on for 20 generations or even more. But eventually you could proudly say, ‘I have made a new kind of frog with longer legs than the old type.’

No wand was needed. No magic of any kind was required. What we have here is the process called
selective breeding
. It makes use of the fact that frogs vary among themselves and those variations tend to be inherited – that is, passed on from parent to child via the genes. Simply by choosing which frogs breed and which do not, we can make a new kind of frog.

Simple, isn’t it?

But just making legs longer is not very impressive. After all, we started with frogs – they were just short-legged frogs. Suppose you started, not with a shorter-legged form of frog, but with something that wasn’t a frog at all, say something more like a newt. Newts have very short legs compared with frogs’ legs (compared with frogs’
hind
legs, at least), and they use them not for jumping but for walking. Newts also have long tails, whereas frogs don’t have tails at all, and newts are altogether longer and narrower than most frogs. But you can see that, given enough thousands of generations, you could change a population of newts into a population of frogs, simply by patiently choosing, in each of those millions of generations, male and female newts that were slightly more frog-like and letting them mate together, while preventing their less frog-like friends from doing so. At no stage during
the
process would you see any dramatic change. Every generation would look pretty much like the previous generation, but nevertheless, once enough generations had gone by, you’d start to notice that the average tail length was slightly shorter and the average pair of hind legs was slightly longer. After a very large number of generations, the longer-legged, shorter-tailed individuals might find it easier to start using their long legs for hopping instead of crawling. And so on.

Of course, in the scenario I have just described, we are imagining ourselves as breeders, picking out those males and females that we want to mate together in order to achieve an end result that we have chosen. Farmers have been applying this technique for thousands of years, to produce cattle and crops that have higher yields or are more resistant to disease, and so on. Darwin was the first person to understand that it works
even when there is no breeder to do the choosing
. Darwin saw that the whole thing would happen
naturally
, as a matter of course, for the simple reason that some individuals survive long enough to breed and others don’t; and those that survive do so because they are better equipped than others. So the survivors’ children inherit the genes that helped their parents to survive. Whether it’s newts or frogs, hedgehogs or dandelions, there will always be some individuals that are better at surviving than others. If long legs happen to be helpful (for frogs or grasshoppers jumping out of danger, say, or for cheetahs hunting gazelles or gazelles fleeing from cheetahs), the individuals with longer legs will be less likely to die. They will be more likely to live long enough to reproduce. Also, more of the individuals available for mating with will
have
long legs. So in every generation there will be a greater chance of the genes for longer legs being passed into the next generation. Over time we will find that more and more of the individuals within that population have the genes for longer legs. So the effect will be exactly the same as if an intelligent designer, such as a human breeder, had chosen long-legged individuals for breeding – except that
no such designer is required
: it all happens naturally, all by itself, as the automatic consequence of which individuals survive long enough to reproduce, and which don’t. For this reason, the process is called
natural selection
.

Other books

Crash by Nicole Williams
Undeniably Yours by Shannon Stacey
Jane Two by Sean Patrick Flanery
Coming Attractions by Bobbi Marolt