The Milky Way and Beyond (26 page)

Read The Milky Way and Beyond Online

Authors: Britannica Educational Publishing

Ground-based observations also have played a major role in recent advances in scientific understanding of nebulae. The emission of gas in the radio and submillimetre wavelength ranges provides crucial information regarding physical conditions and molecular composition. Large radio telescope arrays, in which several individual telescopes function collectively as a single enormous instrument, give spatial resolutions in the radio regime far superior to any yet achieved by optical means.

CHEMICAL COMPOSITION AND PHYSICAL PROCESSES

Many characteristics of nebulae are determined by the physical state of their constituent hydrogen, by far the most abundant element. For historical reasons, nebulae in which hydrogen is mainly ionized (H
+
) are called H II regions, or diffuse nebulae. Those in which hydrogen is mainly neutral are designated H I regions, and those in which the gas is in molecular form (H
2
) are referred to as molecular
clouds. The distinction is important because of major differences in the radiation that is present in the various regions and consequently in the physical conditions and processes that are important.

Radiation is a wave but is carried by packets called photons. Each photon has a specified wavelength and precise energy that it carries, with gamma rays (short wavelengths) carrying the most and X-rays, ultraviolet, optical, infrared, microwave, and radio waves following in order of decreasing energies (or increasing wavelengths). Neutral hydrogen atoms are extremely efficient at absorbing ionizing radiation—that is, an energy per photon of at least 13.6 electron volts (or, equivalently, a wavelength of less than 0.0912 micrometre [3.59055118 × 10
-6
in]). If the hydrogen is mainly neutral, no radiation with energy above this threshold can penetrate except for photons with energies in the X-ray range and above (thousands of electron volts or more), in which case the hydrogen becomes somewhat transparent. The absorption by neutral hydrogen abruptly reduces the radiation field to almost zero for energies above 13.6 electron volts. This dearth of hydrogen-ionizing radiation implies that no ions requiring more ionizing energy than hydrogen can be produced, and the ionic species of all elements are limited to the lower stages of ionization. Within H II regions, with almost all the hydrogen ionized and thereby rendered nonabsorbing, photons of all energies propagate, and ions requiring energetic radiation for their production (e.g., O
++
) occur.

Ultraviolet photons with energies of more than 11.2 electron volts can dissociate molecular hydrogen (H
2
) into two H atoms. In H I regions there are enough of these photons to prevent the amount of H
2
from becoming large, but the destruction of H
2
as fast as it forms takes its toll on the number of photons of suitable energies. Furthermore, interstellar dust is a fairly efficient absorber of photons throughout the optical and ultraviolet range. In some regions of space the number of photons with energies higher than 11.2 volts is reduced to the level where H2 cannot be destroyed as fast as it is produced on grain surfaces. In this case, H
2
becomes the dominant form of hydrogen present. The gas is then part of a molecular cloud. The role of interstellar dust in this process is crucial because H
2
cannot be formed efficiently in the gas phase.

I
NTERSTELLAR
D
UST

Only about 0.7 percent of the mass of the interstellar medium is in the form of solid grains, but these grains have a profound effect on the physical conditions within the gas. Their main effect is to absorb stellar radiation; for photons unable to ionize hydrogen and for wavelengths outside absorption lines or bands, the dust grains are much more opaque than the gas. The dust absorption increases with photon energy, so long-wavelength radiation (radio and far-infrared) can penetrate dust freely, near-infrared rather well, and ultraviolet relatively poorly.

Dark, cold molecular clouds, within which all star formation takes place, owe their existence to dust. Besides absorbing starlight, the dust acts to heat the gas under some conditions (by ejecting electrons produced by the photoelectric effect, following the absorption of a stellar photon) and to cool the gas under other conditions (because the dust can radiate energy more efficiently than the gas and so in general is colder). The largest chemical effect of dust is to provide the only site of molecular hydrogen formation on grain surfaces. It also removes some heavy elements (especially iron and silicon) that would act as coolants to the gas. The optical appearance of most nebulae is significantly modified by the obscuring effects of the dust.

The chemical composition of the gas phase of the interstellar medium alone, without regard to the solid dust, can be determined from the strength of narrow absorption lines that are produced by the gas in the spectra of background stars. Comparison of the composition of the gas with cosmic (solar) abundances shows that almost all the iron, magnesium, and silicon, much of the carbon, and only some of the oxygen and nitrogen are contained in the dust. The absorption and scattering properties of the dust reveal that the solid grains are composed partially of silicaceous material similar to terrestrial rocks, though of an amorphous rather than crystalline variety. The grains also have a carbonaceous component. The carbon dust probably occurs in at least two forms: (1) grains, either free-flying or as components of composite grains that also contain silicates, and (2) individual, freely floating aromatic hydrocarbon molecules, with a range varying from 70 to several hundred carbon atoms and some hydrogen atoms that dangle from the outer edges of the molecule or are trapped in the middle of it.

It is merely convention that these molecules are referred to as dust, since the smallest may be only somewhat larger than the largest molecules observed with a radio telescope. Both of the dust components are needed to explain spectroscopic features arising from the dust. In addition, there are probably mantles of hydrocarbon on the surfaces of the grains. The size of the grains ranges from perhaps as small as 0.0003 micrometre (1.18110236 × 10
-8
in) for the tiniest hydrocarbon molecules to a substantial fraction of a micrometre; there are many more small grains than large ones.

The dust cannot be formed directly from purely gaseous material at the low densities found even in comparatively dense interstellar clouds, which would be considered an excellent laboratory vacuum. For a solid to condense, the gas density must be high enough to allow a few atoms to collide and stick together long enough to radiate away their energy to cool and form a solid. Grains are known to form in the outer atmospheres of cool supergiant stars, where the gas density is comparatively high (perhaps 10
9
times what it is in typical nebulae). The grains are then blown out of the stellar
atmosphere by radiation pressure (the mechanical force of the light they absorb and scatter). Calculations indicate that refracting materials, such as the constituents of the grains proposed above, should condense in this way.

There is clear indication that the dust is heavily modified within the interstellar medium by interactions with itself and with the interstellar gas. The absorption and scattering properties of dust show that there are many more smaller grains in the diffuse interstellar medium than in dense clouds. Apparently in the dense medium the small grains have coagulated into larger ones, thereby lowering the ability of the dust to absorb radiation with short wavelengths (namely, ultraviolet, near 0.1 micrometre). The gas-phase abundances of some elements, such as iron, magnesium, and nickel, also are much lower in the dense regions than in the diffuse gas, although even in the diffuse gas most of these elements are missing from the gas and are therefore condensed into dust. These systematic interactions of gas and dust show that dust grains collide with gas atoms much more rapidly than one would expect if the dust and gas simply drifted together. There must be disturbances, probably magnetic in nature, that keep the dust and gas moving with respect to each other.

The motions of gas within nebulae of all types are clearly chaotic and complicated. There are sometimes large-scale flows, such as when a hot star forms on the outer edge of a cold, quiescent dark molecular cloud and ionizes an H II region in its vicinity. The pressure strongly increases in the newly ionized zone, so the ionized gas flows out through the surrounding material. There are also expanding structures resembling bubbles surrounding stars that are ejecting their outer atmospheres into stellar winds.

T
URBULENCE

Besides these organized flows, nebulae of all types always show chaotic motions called turbulence. This is a well-known phenomenon in gas dynamics that results when there is low viscosity in flowing fluids, so the motions become chaotic eddies that transfer kinetic and magnetic energy and momentum from large scales down to small sizes. On small-enough scales viscosity always becomes important, and the energy is converted into heat, which is kinetic energy on a molecular scale. Turbulence in nebulae has profound, but poorly understood, effects on their energy balance and pressure support.

Turbulence is observed by means of the widths of the emission or absorption lines in a nebular spectrum. No line can be precisely sharp in wavelength, because the energy levels of the atom or ion from which it arises are not precisely sharp. Actual lines are usually much broader than this intrinsic width because of the Doppler effect arising from motions of the atoms along the line of sight. The
emission line of an atom is shifted to longer wavelengths if it is receding from the observer and to shorter wavelengths if it is approaching. Part of the observed broadening is easily explained by thermal motions, since
v
2
, the averaged squared speed, is proportional to
T
/
m
, where
T
is the temperature and
m
is the mass of the atom. Thus, hydrogen atoms move the fastest at any given temperature.

Observations show that, in fact, hydrogen lines are broader than those of other elements but not as much as expected from thermal motions alone. Turbulence represents bulk motions, independent of the mass of the atoms. This chaotic motion of gas atoms of all masses would explain the observations. The physical question, though, is what maintains the turbulence. Why do the turbulent cascades not carry kinetic energy from large-size scales into ever-shorter-size scales and finally into heat?

The answer is that energy is continuously injected into the gases by a variety of processes. One involves strong stellar winds from hot stars, which are blown off at speeds of thousands of kilometres per second. Another arises from the violently expanding remnants of supernova explosions, which sometimes start at 20,000 km (12,000 miles) per second and gradually slow to typical cloud speeds (10 km [6 miles] per second). A third process is the occasional collision of clouds moving in the overall galactic gravitational potential. All these processes inject energy on large scales that can undergo turbulent cascading to heat.

G
ALACTIC
M
AGNETIC
F
IELD

There is a pervasive magnetic field that threads the spiral arms of the Milky Way Galaxy and extends to thousands of light-years above the galactic plane. The evidence for the existence of this field comes from radio synchrotron emission produced by very energetic electrons moving through it and from the polarization of starlight that is produced by elongated dust grains that tend to be aligned with the magnetic field. The magnetic field is very strongly coupled to the gas because it acts upon the embedded electrons, even the few in H I regions, and the electrons impart some motion of the other constituents by means of collisions. The gas and field are effectively confined to moving together, even though the gas can slip along the field freely. The field has an important influence upon the turbulence because it exerts a pressure similar to gas pressure, thereby influencing the motions of the gas. The resulting complex interactions and wave motions have been studied in extensive numerical calculations.

M
OLECULAR
C
LOUDS

A molecular cloud, or a dark nebula, is an interstellar clump or cloud that is opaque because of its internal dust grains. The form of such dark clouds is very irregular:
they have no clearly defined outer boundaries and sometimes take on convoluted serpentine shapes because of turbulence. The largest molecular clouds are visible to the naked eye, appearing as dark patches against the brighter background of the Milky Way Galaxy. An example is the Coalsack in the southern sky. Stars are born within molecular clouds.

C
OMPOSITION

The hydrogen of these opaque dark clouds exists in the form of H
2
molecules. The largest nebulae of this type, the so-called giant molecular clouds, are a million times more massive than the Sun. They contain much of the mass of the interstellar medium, are some 150 light-years across, and have an average density of 100 to 300 molecules per cubic centimetre (1 cubic cm = .06 cubic in) and an internal temperature of only 7 to 15 K. Molecular clouds consist mainly of gas and dust but contain many stars as well. The central regions of these clouds are completely hidden from view by dust and would be undetectable except for the far-infrared thermal emission from dust grains and the microwave emissions from the constituent molecules. This radiation is not absorbed by dust and readily escapes the cloud. The material within the clouds is clumped together on all size scales, with some clouds ranging down to the masses of individual stars. The density within the clumps may reach up to 10
5
H
2
molecules per cubic centimetre or more. Small clumps may extend about one light-year across. Turbulence and the internal magnetic field provide support against the clouds' own gravity.

Other books

All-Star Fever by Matt Christopher
Shadow of Doubt by Terri Blackstock
The Bat that Flits by Norman Collins
Quick Fix by Linda Grimes
Celestial Inventories by Steve Rasnic Tem
Permanent Bliss by BJ Harvey
True Colors by Melissa Pearl
Necrochip by Liz Williams