Read The Scientist as Rebel Online

Authors: Freeman J. Dyson

The Scientist as Rebel (3 page)

The conservative has but little to fear from the man whose reason is the servant of his passions, but let him beware of him in whom reason has become the greatest and most terrible of the passions. These are the wreckers of outworn empires and civilizations, doubters, disintegrators, deicides. In the past they have been men like Voltaire, Bentham, Thales, Marx, but I think that Darwin furnishes an example of the same relentlessness of reason in the field of science. I suspect that as it becomes clear that at present reason not only has a freer play in science than elsewhere, but can produce as great effects on the world through science as through politics, philosophy or literature, there will be more Darwins.

We must regard science, then, from three points of view. First, it is the free activity of man’s divine faculties of reason and imagination. Secondly, it is the answer of the few to the demands of the many for wealth, comfort and victory, gifts which it will grant only in exchange for peace, security and stagnation. Finally it is man’s gradual conquest, first of space and time, then of matter as such, then of his own body and those of other living beings, and finally the subjugation of the dark and evil elements in his own soul.
2

I have already made it clear that I have a low opinion of reductionism, which seems to me to be at best irrelevant and at worst misleading as a description of what science is about. Let me begin with pure mathematics. Here the failure of reductionism has been demonstrated by rigorous proof. This will be a familiar story to many of you. The great mathematician David Hilbert, after thirty years of high creative achievement on the frontiers of mathematics, walked into a blind alley of reductionism. In his later years he espoused a program of formalization, which aimed to reduce the whole of mathematics to a collection of formal statements using a finite alphabet of symbols and a finite set of axioms and rules of inference. This was reductionism in the most literal sense, reducing mathematics to a set of marks written on paper, and deliberately ignoring the context of ideas and applications that give meaning to the marks. Hilbert then proposed to solve the problems of mathematics by finding a general process that could decide, given any formal statement composed of mathematical symbols, whether that statement was true or false. He called the problem of finding this decision process the
Entscheidungsproblem
. He dreamed of solving the
Entscheidungsproblem
and thereby solving as corollaries all the famous unsolved problems of mathematics. This was to be the crowning achievement of his life, the achievement that would outshine all the achievements of earlier mathematicians who solved problems only one at a time.

The essence of Hilbert’s program was to find a decision process that would operate on symbols in a purely mechanical fashion, without requiring any understanding of their meaning. Since mathematics was reduced to a collection of marks on paper, the decision process should concern itself only with the marks and not with the fallible human intuitions out of which the marks were reduced. In spite of the prolonged efforts of Hilbert and his disciples, the
Entscheidungsproblem
was never solved. Success was achieved only in highly restricted domains of mathematics, excluding all the deeper and more
interesting concepts. Hilbert never gave up hope, but as the years went by his program became an exercise in formal logic having little connection with real mathematics. Finally, when Hilbert was seventy years old, Kurt Gödel proved by a brilliant analysis that the
Entscheidungsproblem
as Hilbert formulated it cannot be solved.

Gödel proved that in any formulation of mathematics, including the rules of ordinary arithmetic, a formal process for separating statements into true and false cannot exist. He proved the stronger result which is now known as Gödel’s theorem, that in any formalization of mathematics including the rules of ordinary arithmetic there are meaningful arithmetical statements that cannot be proved true or false. Gödel’s theorem shows conclusively that in pure mathematics reductionism does not work. To decide whether a mathematical statement is true, it is not sufficient to reduce the statement to marks on paper and to study the behavior of the marks. Except in trivial cases, you can decide the truth of a statement only by studying its meaning and its context in the larger world of mathematical ideas.

It is a curious paradox that several of the greatest and most creative spirits in science, after achieving important discoveries by following their unfettered imaginations, were in their later years obsessed with reductionist philosophy and as a result became sterile. Hilbert was a prime example of this paradox. Einstein was another. Like Hilbert, Einstein did his great work up to the age of forty without any reductionist bias. His crowning achievement, the general relativistic theory of gravitation, grew out of a deep physical understanding of natural processes. Only at the very end of his ten-year struggle to understand gravitation did he reduce the outcome of his understanding to a finite set of field equations. But like Hilbert, as he grew older he concentrated his attention more and more on the formal properties of his equations, and he lost interest in the wider universe of ideas out of which the equations arose.

His last twenty years were spent in a fruitless search for a set of
equations that would unify the whole of physics, without paying attention to the rapidly proliferating experimental discoveries that any unified theory would finally have to explain. I do not need to say more about this tragic and well-known story of Einstein’s lonely attempt to reduce physics to a finite set of marks on paper. His attempt failed as dismally as Hilbert’s attempt to do the same thing with mathematics. I shall instead discuss another aspect of Einstein’s later life, an aspect that has received less attention than his quest for the unified field equations: his extraordinary hostility to the idea of black holes.

Black holes were invented by J. Robert Oppenheimer and Hartland Snyder in 1939. Starting from Einstein’s theory of general relativity, Oppenheimer and Snyder found solutions of Einstein’s equations that described what happens to a massive star when it has exhausted its supplies of nuclear energy. The star collapses gravitationally and disappears from the visible universe, leaving behind only an intense gravitational field to mark its presence. The star remains in a state of permanent free fall, collapsing endlessly inward into the gravitational pit without ever reaching the bottom. This solution of Einstein’s equations was profoundly novel. It has had enormous impact on the later development of astrophysics.

We now know that black holes ranging in mass from a few suns to a few billion suns actually exist and play a dominant role in the economy of the universe. In my opinion, the black hole is incomparably the most exciting and the most important consequence of general relativity. Black holes are the places in the universe where general relativity is decisive. But Einstein never acknowledged his brainchild. Einstein was not merely skeptical, he was actively hostile to the idea of black holes. He thought that the black hole solution was a blemish to be removed from his theory by a better mathematical formulation, not a consequence to be tested by observation. He never expressed the slightest enthusiasm for black holes, either as a concept or as a physical possibility. Oddly enough, Oppenheimer too in later life was
uninterested in black holes, although in retrospect we can say that they were his most important contribution to science. The older Einstein and the older Oppenheimer were blind to the mathematical beauty of black holes, and indifferent to the question whether black holes actually exist.

How did this blindness and this indifference come about? I never discussed this question directly with Einstein, but I discussed it several times with Oppenheimer and I believe that Oppenheimer’s answer applies equally to Einstein. Oppenheimer in his later years believed that the only problem worthy of the attention of a serious theoretical physicist was the discovery of the fundamental equations of physics. Einstein certainly felt the same way. To discover the right equations was all that mattered. Once you had discovered the right equations, then the study of particular solutions of the equations would be a routine exercise for second-rate physicists or graduate students. In Oppenheimer’s view, it would be a waste of his precious time, or of mine, to concern ourselves with the details of particular solutions. This was how the philosophy of reductionism led Oppenheimer and Einstein astray. Since the only purpose of physics was to reduce the world of physical phenomena to a finite set of fundamental equations, the study of particular solutions such as black holes was an undesirable distraction from the general goal. Like Hilbert, they were not content to solve particular problems one at a time. They were entranced by the dream of solving all the basic problems at once. And as a result, they failed in their later years to solve any problems at all.

In the history of science it happens not infrequently that a reductionist approach leads to a spectacular success. Frequently the understanding of a complicated system as a whole is impossible without an understanding of its component parts. And sometimes the understanding of a whole field of science is suddenly advanced by the discovery of a single basic equation. Thus it happened that the Schrödinger equation in 1926 and the Dirac equation in 1927 brought a miraculous
order into the previously mysterious processes of atomic physics. The equations of Erwin Schrödinger and Paul Dirac were triumphs of reductionism. Bewildering complexities of chemistry and physics were reduced to two lines of algebraic symbols. These triumphs were in Oppenheimer’s mind when he belittled his own discovery of black holes. Compared with the abstract beauty and simplicity of the Dirac equation, the black hole solution seemed to him ugly, complicated, and lacking in fundamental significance.

But it happens at least equally often in the history of science that the understanding of the component parts of a composite system is impossible without an understanding of the behavior of the system as a whole. And it often happens that the understanding of the mathematical nature of an equation is impossible without a detailed understanding of its solutions. The black hole is a case in point. One could say without exaggeration that Einstein’s equations of general relativity were understood only at a very superficial level before the discovery of the black hole. During the fifty years since the black hole was invented, a deep mathematical understanding of the geometrical structure of space-time has slowly emerged, with the black hole solution playing a fundamental role in the structure. The progress of science requires the growth of understanding in both directions, downward from the whole to the parts and upward from the parts to the whole. A reductionist philosophy, arbitrarily proclaiming that the growth of understanding must go only in one direction, makes no scientific sense. Indeed, dogmatic philosophical beliefs of any kind have no place in science.

Science in its everyday practice is much closer to art than to philosophy. When I look at Gödel’s proof of his undecidability theorem, I do not see a philosophical argument. The proof is a soaring piece of architecture, as unique and as lovely as Chartres Cathedral. Gödel took Hilbert’s formalized axioms of mathematics as his building blocks and built out of them a lofty structure of ideas into which he
could finally insert his undecidable arithmetical statement as the keystone of the arch. The proof is a great work of art. It is a construction, not a reduction. It destroyed Hilbert’s dream of reducing all mathematics to a few equations, and replaced it with a greater dream of mathematics as an endlessly growing realm of ideas. Gödel proved that in mathematics the whole is always greater than the sum of the parts. Every formalization of mathematics raises questions that reach beyond the limits of the formalism into unexplored territory.

The black hole solution of Einstein’s equations is also a work of art. The black hole is not as majestic as Gödel’s proof, but it has the essential features of a work of art: uniqueness, beauty, and unexpectedness. Oppenheimer and Snyder built out of Einstein’s equations a structure that Einstein had never imagined. The idea of matter in permanent free fall was hidden in the equations, but nobody saw it until it was revealed in the Oppenheimer-Snyder solution. On a much more humble level, my own activities as a theoretical physicist have a similar quality. When I am working, I feel myself to be practicing a craft rather than following a method. When I did my most important piece of work as a young man, putting together the ideas of Sin-Itiro Tomonaga, Julian Schwinger, and Richard Feynman to obtain a simplified version of quantum electrodynamics, I had consciously in mind a metaphor to describe what I was doing. The metaphor was bridge-building. Tomonaga and Schwinger had built solid foundations on one side of a river of ignorance, Feynman had built solid foundations on the other side, and my job was to design and build the cantilevers reaching out over the water until they met in the middle. The metaphor was a good one. The bridge that I built is still serviceable and still carrying traffic forty years later. The same metaphor describes well the greater work of unification achieved by Stephen Weinberg and Abdus Salam when they bridged the gap between electrodynamics and the weak interactions. In each case, after the work of unification is done, the whole stands higher than the parts.

In recent years there has been great dispute among historians of
science, some believing that science is driven by social forces, others believing that science transcends social forces and is driven by its own internal logic and by the objective facts of nature. Historians of the first group write social history, those of the second group write intellectual history. Since I believe that scientists should be artists and rebels, obeying their own instincts rather than social demands or philosophical principles, I do not fully agree with either view of history. Nevertheless, scientists should pay attention to the historians. We have much to learn, especially from the social historians.

Other books

The Dangerous Gift by Hunt, Jane
Intuition by C. J. Omololu
GUNNED by Macko, Elaine
Yellow Blue Tibia by Adam Roberts
Blood Mate by Kitty Thomas
To Catch a Billionaire by Stone, Dana
In the Lyrics by Stayton, Nacole