Thinking, Fast and Slow (23 page)

Read Thinking, Fast and Slow Online

Authors: Daniel Kahneman

Do leaders and management practices influence the outcomes of firms in the market? Of course they do, and the effects have been confirmed by systematic research that objectively assessed the characteristics of CEOs and their decisions, and related them to subsequent outcomes of the firm. In one study, the CEOs were characterized by the strategy of the companies they had led before their current appointment, as well as by management rules and procedures adopted after their appointment. CEOs do influence performance, but the effects are much smaller than a reading of the business press suggests.

Researchers measure the strength of relationships by a correlation coefficient, which varies between 0 and 1. The coefficient was defined earlier (in relation to regression to the mean) by the extent to which two measures are determined by shared factors. A very generous estimate of the correlation between the success of the firm and the quality of its CEO might be as high as .30, indicating 30% overlap. To appreciate the significance of this number, consider the following question:

Suppose you consider many pairs of firms. The two firms in each pair are generally similar, but the CEO of one of them is better than the other. How often will you find that the firm with the stronger CEO is the more successful of the two?

 

In a well-ordered and predictable world, the correlation would be perfect (1), and the stronger CEO would be found to lead the more successful firm in 100% of the pairs. If the relative success of similar firms was determined entirely by factors that the CEO does not control (call them luck, if you wish), you would find the more successful firm led by the weaker CEO 50% of the time. A correlation of .30 implies that you would find the stronger CEO leading the stronger firm in about 60% of the pairs—an improvement of a mere 10 percentage points over random guessing, hardly grist for the hero worship of CEOs we so often witness.

If you expected this value to be higher—and most of us do—then you should take that as an indication that you are prone to overestimate the predictability of the world you live in. Make no mistake: improving the odds of success from 1:1 to 3:2 is a very significant advantage, both at the racetrack and in business. From the perspective of most business writers, however, a CEO who has so little control over performance would not be particularly impressive even if her firm did well. It is difficult to imagine people lining up at airport bookstores to buy a book that enthusiastically describes the practices of business leaders who, on average, do somewhat better than chance. Consumers have a hunger for a clear message about the determinants of success and failure in business, and they need stories that offer a sense of understanding, however illusory.

In his penetrating book
The Halo Effect
, Philip Rosenzweig, a business school professor based in Switzerland, shows how the demand for illusory certainty is met in two popular genres of business writing: histories of the rise (usually) and fall (occasionally) of particular individuals and companies, and analyses of differences between successful and less successful firms. He concludes that stories of success and failure consistently exaggerate the impact of leadership style and management practices on firm outcomes, and thus their message is rarely useful.

To appreciate what is going on, imagine that business experts, such as other CEOs, are asked to comment on the reputation of the chief executive of a company. They poрare keenly aware of whether the company has recently been thriving or failing. As we saw earlier in the case of Google, this knowledge generates a halo. The CEO of a successful company is likely to be called flexible, methodical, and decisive. Imagine that a year has passed and things have gone sour. The same executive is now described as confused, rigid, and authoritarian. Both descriptions sound right at the time: it seems almost absurd to call a successful leader rigid and confused, or a struggling leader flexible and methodical.

Indeed, the halo effect is so powerful that you probably find yourself resisting the idea that the same person and the same behaviors appear methodical when things are going well and rigid when things are going poorly. Because of the halo effect, we get the causal relationship backward: we are prone to believe that the firm fails because its CEO is rigid, when the truth is that the CEO appears to be rigid because the firm is failing. This is how illusions of understanding are born.

The halo effect and outcome bias combine to explain the extraordinary appeal of books that seek to draw operational morals from systematic examination of successful businesses. One of the best-known examples of this genre is Jim Collins and Jerry I. Porras’s
Built to Last
. The book contains a thorough analysis of eighteen pairs of competing companies, in which one was more successful than the other. The data for these comparisons are ratings of various aspects of corporate culture, strategy, and management practices. “We believe every CEO, manager, and entrepreneur in the world should read this book,” the authors proclaim. “You can build a visionary company.”

The basic message of
Built to Last
and other similar books is that good managerial practices can be identified and that good practices will be rewarded by good results. Both messages are overstated. The comparison of firms that have been more or less successful is to a significant extent a comparison between firms that have been more or less lucky. Knowing the importance of luck, you should be particularly suspicious when highly consistent patterns emerge from the comparison of successful and less successful firms. In the presence of randomness, regular patterns can only be mirages.

Because luck plays a large role, the quality of leadership and management practices cannot be inferred reliably from observations of success. And even if you had perfect foreknowledge that a CEO has brilliant vision and extraordinary competence, you still would be unable to predict how the company will perform with much better accuracy than the flip of a coin. On average, the gap in corporate profitability and stock returns between the outstanding firms and the less successful firms studied in
Built to Last
shrank to almost nothing in the period following the study. The average profitability of the companies identified in the famous
In Search of Excellence
dropped sharply as well within a short time. A study of
Fortune
’s “Most Admired Companies” finds that over a twenty-year period, the firms with the worst ratings went on to earn much higher stock returns than the most admired firms.

You are probably tempted to think of causal explanations for these observations: perhaps the successful firms became complacent, the less successful firms tried harder. But this is the wrong way to think about what happened. The average gap must shrink, because the original gap was due in good part to luck, which contributed both to the success of the top firms and to the lagging performance of the rest. We have already encountered this statistical fact of life: regression to the mean.

Stories of how businesses rise and fall strike a chord with readers by offering what the human mind needs: a simple message of triumph and failure that identifies clear causes and ignores the determinative power of luck and the inevitability of regression. These stories induce and maintain an illusion of under
standing, imparting lessons of little enduring value to readers who are all too eager to believe them.

Speaking of Hindsight

 

“The mistake appears obvious, but it is just hindsight. You could not have known in advance.”

 

“He’s learning too much from this success story, which is too tidy. He has fallen for a narrative fallacy.”

 

“She has no evidence for saying that the firm is badly managed. All she knows is that its stock has gone down. This is an outcome bias, part hindsight and part halo effect.”

 

“Let’s not fall for the outcome bias. This was a stupid decision even though it worked out well.”

 
The Illusion of Validity
 

System 1 is designed to jump to conclusions from little evidence—and it is not designed to know the size of its jumps. Because of WYSIATI, only the evidence at hand counts. Because of confidence by coherence, the subjective confidence we have in our opinions reflects the coherence of the story that System 1 and System 2 have constructed. The amount of evidence and its quality do not count for much, because poor evidence can make a very good story. For some of our most important beliefs we have no evidence at all, except that people we love and trust hold these beliefs. Considering how little we know, the confidence we have in our beliefs is preposterous—and it is also essential.

The Illusion of Validity

 

Many decades ago I spent what seemed like a great deal of time under a scorching sun, watching groups of sweaty soldiers as they solved a problem. I was doing my national service in the Israeli Army at the time. I had completed an undergraduate degree in psychology, and after a year as an infantry officer was assigned to the army’s Psychology Branch, where one of my occasional duties was to help evaluate candidates for officer training. We used methods that had been developed by the British Army in World War II.

One test, called the “leaderless group challenge,” was conducted on an obstacle field. Eight candidates, strangers to each other, with all insignia of rank removed and only numbered tags to identify them, were instructed to lift a long log from the ground and haul it to a wall about six feet high. The entire group had to get to the other side of the wall without the log touching either the ground or the wall, and without anyone touching the wall. If any of these things happened, they had to declare itsigрЉ T and start again.

There was more than one way to solve the problem. A common solution was for the team to send several men to the other side by crawling over the pole as it was held at an angle, like a giant fishing rod, by other members of the group. Or else some soldiers would climb onto someone’s shoulders and jump across. The last man would then have to jump up at the pole, held up at an angle by the rest of the group, shinny his way along its length as the others kept him and the pole suspended in the air, and leap safely to the other side. Failure was common at this point, which required them to start all over again.

As a colleague and I monitored the exercise, we made note of who took charge, who tried to lead but was rebuffed, how cooperative each soldier was in contributing to the group effort. We saw who seemed to be stubborn, submissive, arrogant, patient, hot-tempered, persistent, or a quitter. We sometimes saw competitive spite when someone whose idea had been rejected by the group no longer worked very hard. And we saw reactions to crisis: who berated a comrade whose mistake had caused the whole group to fail, who stepped forward to lead when the exhausted team had to start over. Under the stress of the event, we felt, each man’s true nature revealed itself. Our impression of each candidate’s character was as direct and compelling as the color of the sky.

After watching the candidates make several attempts, we had to summarize our impressions of soldiers’ leadership abilities and determine, with a numerical score, who should be eligible for officer training. We spent some time discussing each case and reviewing our impressions. The task was not difficult, because we felt we had already seen each soldier’s leadership skills. Some of the men had looked like strong leaders, others had seemed like wimps or arrogant fools, others mediocre but not hopeless. Quite a few looked so weak that we ruled them out as candidates for officer rank. When our multiple observations of each candidate converged on a coherent story, we were completely confident in our evaluations and felt that what we had seen pointed directly to the future. The soldier who took over when the group was in trouble and led the team over the wall was a leader at that moment. The obvious best guess about how he would do in training, or in combat, was that he would be as effective then as he had been at the wall. Any other prediction seemed inconsistent with the evidence before our eyes.

Because our impressions of how well each soldier had performed were generally coherent and clear, our formal predictions were just as definite. A single score usually came to mind and we rarely experienced doubts or formed conflicting impressions. We were quite willing to declare, “This one will never make it,” “That fellow is mediocre, but he should do okay,” or “He will be a star.” We felt no need to question our forecasts, moderate them, or equivocate. If challenged, however, we were prepared to admit, “But of course anything could happen.” We were willing to make that admission because, despite our definite impressions about individual candidates, we knew with certainty that our forecasts were largely useless.

The evidence that we could not forecast success accurately was overwhelming. Every few months we had a feedback session in which we learned how the cadets were doing at the officer-training school and could compare our assessments against the opinions of commanders who had been monitoring them for some time. The story was always the same: our ability to predict performance at the school was negligible. Our forecasts were better than blind guesses, but not by much.

We weed ဆre downcast for a while after receiving the discouraging news. But this was the army. Useful or not, there was a routine to be followed and orders to be obeyed. Another batch of candidates arrived the next day. We took them to the obstacle field, we faced them with the wall, they lifted the log, and within a few minutes we saw their true natures revealed, as clearly as before. The dismal truth about the quality of our predictions had no effect whatsoever on how we evaluated candidates and very little effect on the confidence we felt in our judgments and predictions about individuals.

What happened was remarkable. The global evidence of our previous failure should have shaken our confidence in our judgments of the candidates, but it did not. It should also have caused us to moderate our predictions, but it did not. We knew as a general fact that our predictions were little better than random guesses, but we continued to feel and act as if each of our specific predictions was valid. I was reminded of the Müller-Lyer illusion, in which we know the lines are of equal length yet still see them as being different. I was so struck by the analogy that I coined a term for our experience: the
illusion of validity
.

I had discovered my first cognitive illusion.

 

 

Decades later, I can see many of the central themes of my thinking—and of this book—in that old story. Our expectations for the soldiers’ future performance were a clear instance of substitution, and of the representativeness heuristic in particular. Having observed one hour of a soldier’s behavior in an artificial situation, we felt we knew how well he would face the challenges of officer training and of leadership in combat. Our predictions were completely nonregressive—we had no reservations about predicting failure or outstanding success from weak evidence. This was a clear instance of WYSIATI. We had compelling impressions of the behavior we observed and no good way to represent our ignorance of the factors that would eventually determine how well the candidate would perform as an officer.

Looking back, the most striking part of the story is that our knowledge of the general rule—that we could not predict—had no effect on our confidence in individual cases. I can see now that our reaction was similar to that of Nisbett and Borgida’s students when they were told that most people did not help a stranger suffering a seizure. They certainly believed the statistics they were shown, but the base rates did not influence their judgment of whether an individual they saw on the video would or would not help a stranger. Just as Nisbett and Borgida showed, people are often reluctant to infer the particular from the general.

Subjective confidence in a judgment is not a reasoned evaluation of the probability that this judgment is correct. Confidence is a feeling, which reflects the coherence of the information and the cognitive ease of processing it. It is wise to take admissions of uncertainty seriously, but declarations of high confidence mainly tell you that an individual has constructed a coherent story in his mind, not necessarily that the story is true.

The Illusion of Stock-Picking Skill

 

In 1984, Amos and I and our friend Richard Thaler visited a Wall Street firm. Our host, a senior investment manager, had invited us to discuss the role of judgment biases in investing. I knew so little about finance that I did not even know what to ask him, but I remember one exchange. “When you sell a stock,” d nဆI asked, “who buys it?” He answered with a wave in the vague direction of the window, indicating that he expected the buyer to be someone else very much like him. That was odd: What made one person buy and the other sell? What did the sellers think they knew that the buyers did not?

Since then, my questions about the stock market have hardened into a larger puzzle: a major industry appears to be built largely on an
illusion of
skill
. Billions of shares are traded every day, with many people buying each stock and others selling it to them. It is not unusual for more than 100 million shares of a single stock to change hands in one day. Most of the buyers and sellers know that they have the same information; they exchange the stocks primarily because they have different opinions. The buyers think the price is too low and likely to rise, while the sellers think the price is high and likely to drop. The puzzle is why buyers and sellers alike think that the current price is wrong. What makes them believe they know more about what the price should be than the market does? For most of them, that belief is an illusion.

In its broad outlines, the standard theory of how the stock market works is accepted by all the participants in the industry. Everybody in the investment business has read Burton Malkiel’s wonderful book
A Random Walk Down Wall Street
. Malkiel’s central idea is that a stock’s price incorporates all the available knowledge about the value of the company and the best predictions about the future of the stock. If some people believe that the price of a stock will be higher tomorrow, they will buy more of it today. This, in turn, will cause its price to rise. If all assets in a market are correctly priced, no one can expect either to gain or to lose by trading. Perfect prices leave no scope for cleverness, but they also protect fools from their own folly. We now know, however, that the theory is not quite right. Many individual investors lose consistently by trading, an achievement that a dart-throwing chimp could not match. The first demonstration of this startling conclusion was collected by Terry Odean, a finance professor at UC Berkeley who was once my student.

Odean began by studying the trading records of 10,000 brokerage accounts of individual investors spanning a seven-year period. He was able to analyze every transaction the investors executed through that firm, nearly 163,000 trades. This rich set of data allowed Odean to identify all instances in which an investor sold some of his holdings in one stock and soon afterward bought another stock. By these actions the investor revealed that he (most of the investors were men) had a definite idea about the future of the two stocks: he expected the stock that he chose to buy to do better than the stock he chose to sell.

To determine whether those ideas were well founded, Odean compared the returns of the stock the investor had sold and the stock he had bought in its place, over the course of one year after the transaction. The results were unequivocally bad. On average, the shares that individual traders sold did better than those they bought, by a very substantial margin: 3.2 percentage points per year, above and beyond the significant costs of executing the two trades.

It is important to remember that this is a statement about averages: some individuals did much better, others did much worse. However, it is clear that for the large majority of individual investors, taking a shower and doing nothing would have been a better policy than implementing the ideas that came to their minds. Later research by Odean and his colleague Brad Barber supported this conclusion. In a paper titled “Trading Is Hazardous to Yourt-tဆ Wealth,” they showed that, on average, the most active traders had the poorest results, while the investors who traded the least earned the highest returns. In another paper, titled “Boys Will Be Boys,” they showed that men acted on their useless ideas significantly more often than women, and that as a result women achieved better investment results than men.

Of course, there is always someone on the other side of each transaction; in general, these are financial institutions and professional investors, who are ready to take advantage of the mistakes that individual traders make in choosing a stock to sell and another stock to buy. Further research by Barber and Odean has shed light on these mistakes. Individual investors like to lock in their gains by selling “winners,” stocks that have appreciated since they were purchased, and they hang on to their losers. Unfortunately for them, recent winners tend to do better than recent losers in the short run, so individuals sell the wrong stocks. They also buy the wrong stocks. Individual investors predictably flock to companies that draw their attention because they are in the news. Professional investors are more selective in responding to news. These findings provide some justification for the label of “smart money” that finance professionals apply to themselves.

Although professionals are able to extract a considerable amount of wealth from amateurs, few stock pickers, if any, have the skill needed to beat the market consistently, year after year. Professional investors, including fund managers, fail a basic test of skill: persistent achievement. The diagnostic for the existence of any skill is the consistency of individual differences in achievement. The logic is simple: if individual differences in any one year are due entirely to luck, the ranking of investors and funds will vary erratically and the year-to-year correlation will be zero. Where there is skill, however, the rankings will be more stable. The persistence of individual differences is the measure by which we confirm the existence of skill among golfers, car salespeople, orthodontists, or speedy toll collectors on the turnpike.

Other books

Ghosts - 05 by Mark Dawson
The Dirty City by Jim Cogan
Death of a Darklord by Laurell K. Hamilton
For Keeps by Natasha Friend