Read Understanding Research Online
Authors: Marianne Franklin
Suggesting that research can be carried out these days without using the web, that automated, computer-aided research existed before the arrival of the internet, or that document analysis and scholarly writing did, and still occurs without computer-mediation arguably separates the ‘Google generation’ from the ‘silver surfers’ (see UCL 2008). Nonetheless, like any significant technology in terms of its impact on society, politics, and culture (think of electricity, the telephone, printing, or photography), the internet too has a history. It too has changed over time and will do so again, sooner rather than later in this case because what is striking about the internet technologies is that this history is relatively brief; not even that of a human lifetime.
Moreover, many aspects of this ‘short history’ remain disputed; the ownership, control, and future design of the internet are currently in flux, making it a fast-moving area for internet scholars, students, and researchers.
The internet is not an organized system. No-one is in charge [yet]. It is not primarily a network or even a network of networks. Above all it’s a simple fact – the fact that millions of computers across the world can communicate with each other.
(Ó Dochartaigh 2009: 3; see Gaiser and Schreiner 2009: 7–9)
The internet, as a particular combination of ICTs that permitted computers to communicate and computer-users to navigate these interconnections in a ‘user-friendly’ manner, the world-wide web and its family of internet protocols, was developed in the late 1980s.
4
It took off in the 1990s with what is now called the ‘dotcom boom’, a bubble which collapsed around 2001. Up to then it was the preserve of computer geeks, government military establishments, and software designers working in IT corporation and government R&D departments.
Perhaps you may even think it irrelevant to consider that it was not so long ago that teaching, assessment, and supervision took place face-to-face, by phone, or in written form; virtual learning environments or digital uploading of essays were a thing of the future. This is the first distinction you need to make; the difference between the internet’s core functions and its underlying architecture on the one hand and, on the other, the plethora of products, services, and gadgets that flood the market. Only hindsight can tell which of these were fads and which were there to stay.
Technical aptitude or familiarity with website design, a particular computer code for software development, does not automatically add up to proficiency in internet/online research. Expertise in one area may well be equalled by relative ignorance in another. Why?
So which web – internet – is at stake here? There are at least three generations of the internet, i.e. computers communicating with each other as we know it. Some would argue, going back to the 1960s, that this is also not strictly correct. For the sake of argument we stipulate here that what is generally understood as the internet proper refers to three overlapping periods:
There are some terms we need to keep distinct even as they tend to be used both interchangeably and as disciplinary markers; the predominance of one or other of these terms indicates differences in philosophical, empirical, and even political disposition towards the role of the internet in society, as a research field, resource, or source of disquiet.
Cybernetics
: This term was coined in the 1940s for theory and research into human–machine interactions based on how ‘feedback loops’ function in social and automated contexts. A discipline, if not a general paradigm, emerged around the Macy Conferences for Cybernetics (1943–54), which brought key figures from computer science, biology, mathematics, and anthropology together. This line of thinking is integral to the computational logic at the heart of information technology. Hayles (1999: 8) notes, as do many others, the term’s etymological origin in the Greek for ‘steersman’; now extended to R&D into ways of furthering ‘the synthesis between the organic and the mechanical’ (ibid.). Three principles are at the heart of the cybernetic paradigm: information, control, and communication (Haraway 1990, Ramage 2009, Spiller 2002).
The next two terms tend to be used synonymously in everyday language. However, they are not synonyms; the internet is the overarching architecture within which the world-wide web (or web for short) functions. Because the latter is the part most people, researchers and students in particular, use and access on a regular basis it is easy to forget that this is a particular system of internet servers based on hyperlinking software; web browsers, search engines, graphics, audio and video singly or together have developed in the wake of the web’s
hyperlinking
facilities.
The internet
: Because the internet is the largest network of connected computers across the globe, it has become a generic term for the means and medium for all manner of computer-mediated communications; email to computer-dating to gaming; electronic commerce to e-government to political fund-raising. These various functions based in the PC, laptop and increasingly the mobile phone, connect through servers around the world and are enabled by layers of computer codes and the ‘user-friendly’ icons on our screens. In simple terms the term denotes ‘a network of networks’. The way the internet works is by a particular software constellation
based on two protocols, TCP and IP (Transmission Control Protocol/Internet Protocol). These effectively connect a host (for example, your PC or mobile phone) with server/s. It is the backbone of computer-mediated communications as we understand them today.
The world-wide web
dates from the 1990s and was key to the internet’s rapid and popular uptake and the corollary ‘dotcom’ boom, which lasted until the new millennium. Its hyperlinking software protocols characterize today’s internet; these are what allow us to jump from one website or document to another:
hyperlink
. In distinction to how the internet’s origins are rooted in the US military establishment, the web was developed in Switzerland by a British–European consortium led by Tim Berners-Lee in the late 1980s. Not all servers that make up the internet are part of the web.
Web 2.0/social media
: To all intents and purposes commercial social networking sites (for example, Facebook, MySpace, YouTube) that bundle text, images, and moving images into a single, individually based ‘social network’ have become synonymous with the web. On going to press, the global brand-leader, Facebook, had reached the 500 million mark, the number of registered users outstripping the population of many countries. Email and static websites linked by browser software (for example, Explorer, Firefox), the bread-and-butter of internet communications, may be on their way out. Time will tell.
Cyberspace
: A term with many inflections and a rich literary genealogy in science fiction. For our purposes here the term encompasses the experiential, phenomenological dimensions to how the web functions in technical terms or how the internet’s architecture is configured. Tim Jordan’s definition should suffice for now: ‘Cyberspace can be called the virtual lands, with virtual lives and virtual societies . . . [that] . . . do not exist with the same physical reality that “real” societies do . . . The physical exists in cyberspace but it is reinvented’ (Jordan 1999: 1).
Virtuality
is also an elastic term that looks to capture the way ICTs have become embedded in ways of thinking about and living with/in our organic bodies. The ‘strategic definition’ put forward by Katherine Hayles pinpoints this tension and everyday fact of life: ‘Virtuality is the cultural perception that material objects are interpenetrated by information patterns. . . . [This] definition plays off the duality at the heart of the condition of virtuality – materiality on the one hand, information on the other’ (Hayles 1999: 12, 13–14).
A
website
is a formal presence on the web. For that you need a web address, which in turn is comprised of several elements; see pp. 134–6 below. How a website is set up and designed differs from individual, to organization, corporation, and governmental body. But all have a home page; the first thing that opens when you enter the site. Sometimes this home page comes after or doubles up as a web portal. As the name suggests, a
web portal
is a gateway website; it leads you further into a
range of options for a website. Larger organizations use portals but not exclusively; the United Nations at
http://www.un.org/
is a classic case; a web portal is comparable to a front door, ‘shop window’, or ‘welcome’ sign.
Websites are comprised of
web-pages
, variously made up of text, images, sound, and video material. The website’s organizational hierarchy, multimedia applications, and layout are down to graphic design decisions, expertise, access to a range of software applications, computing power, and bandwidth capacity. As the web becomes increasingly made up of sound, still images and video, websites are less text-heavy yet require more transmission capacity (
bandwidth
). That said, (hyper)text still underpins web-content. Older websites or those without access to enough bandwidth (including electricity), the latest plug-ins or web design know-how are immediately apparent for their larger amount of static, textual content. Questions of looks, taste, and cultural distinctions also count in twenty-first century cyberspace.
Websites, and their composite web-pages, are linked together, and then in turn linked onwards to the web by a computer protocol called HTTP –
hypertext transfer protocol
. The way that they can be located is, as in ‘real life’, by having an address; one that is recognizable and consistently locatable. In web-speak this is the URL, the
universal resource locator
. The address given for a website’s home page provides you with the URL in its simplest form.
When someone refers to the
URL
(Universal Resource Locater) or
web address
they are talking about that line of words, numbers and slashes that appear in the strip at the top of the screen when you use a web-browser; for example, Firefox, Explorer, or Safari. How this address contracts, expands, and operates as you move to and from it is where researching the internet, rather than surfing it in varying degrees of interest or absent-mindedness, really begins in earnest. For instance,
http://www.un.org/
is the URL for the United Nations on the world-wide web. This address brings you to the UN’s website by way of this web-portal/home page. Once you’ve opted for your language option, from there you enter a matrix of interconnected web-pages.
Let’s take a closer look by taking this screenshot (
Figure 5.2
) from Goldsmiths’ website (2010) as an example. As you go deeper into any given website (see the screen-shot) this address (URL) gets longer, depending on how its composite pages and links have been organized, and coded accordingly. Learning how to interpret this first strip of information as you are browsing (this is a way of moving through the web in a less structured, more open-ended way) is one thing. Ascertaining its usefulness when searching (using a search engine or tool in a focused search) in a glance can save you time.
At this point many of you may well be aware that searching the web in our research tends to follow web-surfing practice; namely the use of the ‘back’ button/arrow icon on the top left-hand side of our browser as we ‘browse’ the web. This forward and backwards movement gets most of us where we want to go; at times though it has us lose our place because not every part of the web address is linked in the same way. So, habits and the ease with which most of us search/browse in this way aside, there are ways to be more focused in this respect, especially as we face search results as a
list of top-ten hits. Let’s look again at the web address shown in the screenshot close up (
Figure 5.3
).
All web addresses have three main elements:
Figure 5.2
Screenshot (i)
Figure 5.3
Screenshot (ii)
When
citing web addresses
certain rules now apply; the whole URL is required along with the date you last accessed the site as a rule (though some citation style guides differ on this point).
Along with these two criteria, an author-name, and document title are also mandatory; if the author is an organization then that will suffice. If the only document title you have is the one designating the web-page, then that will suffice. Whether you incorporate web resources into your literature list or as a separate list depends on your institutional setting as well as whichever style or citation guide you are using. In any case, simply listing URLs in your literature list is not adequate.
Every website owner or administrator has to register their web address; whether they opt for a generic top-level domain name or a country-code depends on availability, commercial, cultural, and political considerations; a whole story and area for advocacy and research in itself.
6
The governing body for this process at the global level is ICANN (the Internet Corporation for Assigned Names and Numbers), a corporate entity based in California, USA.
7
I don’t usually pay much attention to the web address because I can usually see straightaway if the web-page/website is relevant
.