When All Hell Breaks Loose (38 page)

10% Povidone—Iodine Solution

 

Most everyone has this product in their home first-aid kit, more commonly recognized under the trade name
Betadine
. 10 percent povidone-iodine replaced tincture of iodine 2 percent as a topical wound disinfectant largely because povidone doesn't sting when it's applied to a wound. (Tinctures contain alcohol, which causes the stinging.) Povidone itself is nontoxic and was used as a blood extender during World War II. Regardless of the larger number—10 percent as opposed to 2 percent—use eight drops of 10 percent povidone-iodine per quart or liter of water instead of five drops. For a maximum dose, similar to using ten drops of tincture of iodine 2 percent instead of five, don't use more than sixteen drops of 10 percent povidone-iodine per quart of water. Buy the generic version of this product, not the trade name, at the grocery or drugstore to avoid paying high prices. Other than the variation in the dose, follow the same guidelines as used for 2 percent tincture above.

INGENIOUS IMPROVISED EYEDROPPER

 

To use the halogens iodine and chlorine you'll need to measure them in drops (or gtts) to disinfect your water. The easiest way to do this is to have an eyedropper attached with a piece of string to the gallon of bleach, or rubber-banded or taped to the one-ounce bottle of iodine. (Most iodine bottles usually have a built-in dropper based on cohesion on the inside of the cap.) If you don't have an eyedropper, or lose the one you had, you can easily improvise a dropper from a spoon and a piece of paper.

Make a strip of paper three or four inches long and a quarter inch wide. It can be torn or cut with scissors so don't get fancy about it. Then, take an ordinary kitchen spoon, fill it halfway with iodine or chlorine, and place most of the paper in the spoon with about an inch overhanging the tip of the spoon. The strip of paper will saturate with the halogen, and with the spoon slightly tipped, will draw by capillary action, drop by drop, the halogen down the strip. If you want more drops faster, slightly increase the tilt of the spoon. If you're the visual type, check out the picture in the photo section.

 

Chlorine Bleach: Sodium Hypochlorite 5.25 and 6%

 

Chlorine, like iodine, is a halogen that is commonly used to disinfect water. Sodium hypochlorite (NaOCI) was initially tinkered with in 1785 by the Frenchman Berthollet, who first used it to bleach cotton. It has a pH of about 11 and is relatively unstable. It's widely used for a variety of purposes in many industries such as agriculture, chemical, glass, food, paper, pharmaceutical, and waste disposal.

While in the past iodine was used to disinfect town water supplies, chlorine has taken its place. Hypochlorite was first used to disinfect water to help combat cholera epidemics in London in 1854. It was used much later as a routine water treatment, initially in Belgium in 1902. Here in the United States, its first use in disinfecting city water happened in Jersey City, New Jersey, and Chicago, Illinois, in 1908. While the water treatment plant guys and gals use the big chlorine guns, we common folk have access to sodium hypochlorite 5.25 and 6 percent, otherwise known as chlorine bleach. For water disinfection purposes, buy bleach without added phosphates, dyes, or perfumes. It's commonly available at practically every supermarket, drug, and discount store in the nation, and if you purchase the generic brand, will cost less then two dollars for a gallon. This gallon will treat hundreds of quarts of nonpotable water while sanitizing your emergency potty, help you dispose of a corpse, clean your sink, bathtub, shower, and floor, as well as assist in removing the bloodstains from your shirt after fighting the neighbor over limited emergency supplies if you fail to act on the advice given in this book.

Short of drinking bleach outright, or using ridiculous amounts when disinfecting water, its toxicity is limited. It is corrosive and will stain clothing so keep it in an unbreakable container and use it with care. Hypochlorite solutions will eventually lose their chlorine over time as the active chlorine evaporates at a rate of 0.75 gram per day from the solution. Heat disintegrates it, as do air and sunlight, certain metals, and other things not normally found in a household. Thus
rotate
your sodium hypochlorite stock because when it has been stored for a long time, it becomes inactive. Store it in a cool area in an opaque, airtight container. Stay on the safe side with the potency of your chlorine and replace your gallon of bleach every year, whether you've opened it or not.

Since it is a halogen, like iodine, chlorine will readily bond to nitrogen compounds, organic and inorganic, present within the water. These nitrogen compounds, or pond scum, mess with the halogen's ability to kill, requiring either more sit time for the water to disinfect or greater amounts of halogen. Strain your water first through a bandana or some other article of clothing or let the water sit for a few hours in a five-gallon bucket to let the unwanted stuff settle to the bottom. This is especially important when using chlorine bleach, as organic matter bonds with the chlorine itself, actually changing its chemical makeup into something called
chloramine
, which does nothing to disinfect your water. Chlorine also doesn't work well with alkaline water and doesn't like being physically jostled, like being bounced around in a backpack. These are the main reasons I don't like it for disinfecting water in a wilderness setting, although I know people who are allergic to iodine and choose to use chlorine.

Important Note:
I have seen conflicting data from reputable medical and chemical engineering sources regarding sodium hypochlorite's effectiveness against
Giardia Lambia
and
Cryptosporidium
. Some say it doesn't work and some say it does. Keep this in mind when using this halogen when these two critters are suspect.

Disinfecting Water with Chlorine Bleach

 

To use chlorine for disinfecting
clear
and
temperate water
, add two to four drops of chlorine bleach per U.S. quart. Give the container a little shake and let it sit for thirty minutes. Slightly open the cap, dribble some disinfected water down the threads, and smell the water. IT SHOULD SMELL LIKE CHLORINE. If it doesn't, add another drop or two of bleach and let it sit for another thirty minutes. As stated above, chlorine is sensitive to the temperature of the water. For cold water, either add another drop or two of chlorine and/or let the water sit longer, two to three hours or more, in order for it to properly disinfect. As a side note, normal tap water contains about 0.2 to 0.5 ppm (parts per million) of chlorine, swimming pools contain 1.5 to 3.0 ppm, and hot tubs 3.0 to 5.0 ppm.

Attention!
When using iodine or chlorine to disinfect suspect water sources, if in doubt,
add more halogen and/or let the water sit longer
.

Filters

 

The first water filter was developed in 1685 by the Italian physician Lu Antonio Porzo. The filter consisted of both a settling and a sand filtration unit. Later, in 1746, French scientist Joseph Amy received the first patent for a filter design which used filters created from wool, sponges, and charcoal. It was used in households as early as 1750, and the trend seems to have continued.

Today many homes have water filters under their sinks to make municipal water taste and look better. Backpacking and camping stores are chockful of portable water filters that are designed specifically to screen out harmful waterborne pathogens. Most of them accomplish their task in the same way, by having some sort of filter material that physically "filters out" the bad bugs. Some water filters are large and, while semiportable, are designed for the stationary disinfection of large volumes of water for group expeditions. A few water filters are massive and are enjoyed by entire communities. The first U.S. water plant utilizing filters was built in 1872 in Poughkeepsie, New York. Other water filters are gravity fed and are ideal for use in the home. They can be purchased at many hardware stores and home building supply centers. Simply add the water in question into the catchment basin in the top, and it slowly percolates through the filters, screening out whatever pathogens the maker claims. . .you hope. If you purchase a filter of this type, make sure its intention is the filtering out of harmful pathogens (or chemicals), not simply prettying up how the water appears.

A filter's effectiveness is typically rated in
microns
. Different pathogens are different sizes, and the more expensive filters filter out the smallest, or those of the tiniest microns, in size. Viruses are so dinky that many will not be caught by any filter. To compensate for this, some manufacturers offer the option of a screwon, iodine-impregnated post-filter that disinfects your water after it's filtered. As some water filters are expensive and can run more than two hundred and fifty dollars, the reader might wonder why people don't simply use iodine that costs less then two bucks and can disinfect wounds as well. My answer is, buyer ego or ignorance and effective marketing. If you have a known allergy to iodine, that's one good reason to use a filter (without the iodine post-filter), but you will still be at the mercy of most viruses. Currently, this is not a big deal in the United States, but it is a serious concern on your visit to India. Make note that after a disaster and the potential contamination of potable water sources with poor sanitary practices, dead bodies, and God knows what else, viruses can make a roaring comeback in your sleepy little town.

Although an important part of your survival plan is the creation of potable water, water filters offer up only one use, violating the credo of multiuse gear. Most are expensive, and all backpacking varieties are mechanical, and mechanical things have many moving parts, which can and do fail under use. I have seen more than one brand-new water filter choke in the field, much to the dismay of its owner. In the Southwest, where many rivers and streams look like chocolate milk due to sediments, filters can clog within minutes. They then go through a vicious cycle: cleaned, clogged, cleaned, clogged, etc. A filter is usually operated by pumping a knob or lever with the hand, and the more clogged a filter becomes, the harder it is to operate. I have witnessed people in a sweaty lather trying to coax their filter to poop out a quart of water. If you have the time and the container, pour gathered water into your trusty five-gallon bucket to allow sediments to settle. Lighter foreign objects can be skimmed off the top. Many backpacking filters have a foam float attached to the gathering hose that allows you to adjust where it's stationed in the water so you're not sucking dirt off the bottom. All but the most expensive water filters will need their filters changed on a regular basis so buy spares. Even the more expensive ceramic filters will eventually wear out from repeated cleanings so factor this into your family's preparedness plan.

Some filters claim to filter out certain amounts of radioactive material, heavy metals, and other chemical contaminants. The problem with these claims is, how are we to know? The people who have the real money to invest in whether any disinfection method works as claimed, be it a filter or halogen, are the medical community and the military. My local laboratory charges more than one hundred dollars to inspect for
each
pathogen that may or may not be present within questionable water.

All in all, I do appreciate filters for their convenience, but don't limit your water disinfection strategy to its mechanical mercy. One of the main advantages of filtration for certain types of gathered city water is that it is bound to remove at least some pollutants.

Filtering Toxic Chemicals, Heavy Metals, and Pollutants

 

Killing organic waterborne pathogens is one thing, filtering out toxic chemicals, heavy metals, and other pollutants is an entirely different matter. A simple Web search will pull up dozens of water filter options that deal with waterborne pathogens and/or chemical contaminants. Many can be installed under the kitchen sink or attach to the water faucet itself.

Other books

Come See About Me by Martin, C. K. Kelly
Those in Peril by Margaret Mayhew
The Reward of The Oolyay by Alden Smith, Liam
The Black Widow by Wendy Corsi Staub
7 Days and 7 Nights by Wendy Wax
Desperados MC by Valentine, Sienna
PSALM 44 by Aleksandar Hemon and John K. Cox