Are We Smart Enough to Know How Smart Animals Are? (2 page)

1
MAGIC WELLS

What we observe is not nature in itself, but nature exposed to our method of questioning.

—Werner Heisenberg (1958)
1

On Becoming a Bug

Opening his eyes, Gregor Samsa woke up inside the body of an unspecified animal. Equipped with a hard exoskeleton, the “horrible vermin” hid under the sofa, crawled up and down walls and ceilings, and loved rotten food. Poor Gregor’s transformation inconvenienced and disgusted his family to the point that his death came as a relief.

Franz Kafka’s
Metamorphosis
, published in 1915, was an odd opening salvo for a less anthropocentric century. Having selected a repulsive creature for metaphorical effect, the author forced us from the very first page to imagine what it is like to be a bug. At around the same time, Jakob von Uexküll, a German biologist, drew attention to the animal point of view, calling it its
Umwelt
. To illustrate this new concept (German for the “surrounding world”), Uexküll took us on a stroll through various worlds. Each organism senses the environment in its own way, he said. The eyeless tick climbs onto a grass stem to await the smell of butyric acid emanating from mammalian skin. Since experiments have shown that this arachnid can go for eighteen years without food, the tick has ample time to meet a mammal, drop onto her victim, and gorge herself on warm blood. Afterward she is ready to lay her eggs and die. Can we understand the tick’s
Umwelt
? It seems incredibly impoverished compared to ours, but Uexküll saw its simplicity as a strength: her goal is well defined, and she encounters few distractions.

Uexküll reviewed other examples, showing that a single environment offers hundreds of realities peculiar to each species.
Umwelt
is quite different from the notion of
ecological niche
, which concerns the habitat that an organism needs for survival. Instead,
Umwelt
stresses an organism’s self-centered, subjective world, which represents only a small tranche of all available worlds. According to Uexküll, the various tranches are “not comprehended and never discernible” to all the species that construct them.
2
Some animals perceive ultraviolet light, for example, while others live in a world of smells or, like the star-nosed mole, feel their way around underground. Some sit on the branches of an oak, and others live underneath its bark, while a fox family digs a lair among its roots. Each perceives the same tree differently.

Humans can try to imagine the
Umwelt
of other organisms. Being a highly visual species ourselves, we buy smartphone apps that turn colorful images into those seen by people without color vision. We can walk around blindfolded to simulate the
Umwelt
of the vision-impaired in order to augment our empathy. My most memorable experience with an alien world, however, came from raising jackdaws, small members of the crow family. Two of them flew in and out of my window on the fourth floor of a student dorm, so I could watch their exploits from above. When they were young and inexperienced, I observed them, like any good parent, with great apprehension. We think of flight as something birds do naturally, but it is actually a skill that they have to learn. Landing is the hardest part, and I was always afraid they would crash into a moving car. I began to think like a bird, mapping the environment as if looking for the perfect landing spot, judging a distant object (a branch, a balcony) with this goal in mind. Upon achieving a safe landing, my birds would give happy “caw-caw” calls, after which I would call them to come back, and the whole process would start anew. Once they became expert flyers, I enjoyed their playful tumbling in the wind as if I were flying among them. I entered my birds’
Umwelt
, even though imperfectly.

Whereas Uexküll wanted science to explore and map the
Umwelten
of various species, an idea that deeply inspired students of animal behavior known as ethologists, philosophers of the last century were rather pessimistic. When Thomas Nagel, in 1974, asked, “What is it like to be a bat?” he concluded that we would never know.
3
We have no way of entering the subjective life of another species, he said. Nagel did not seek to know how a human would feel as a bat: he wanted to understand how a bat feels like a bat. This is indeed beyond our comprehension. The same wall between them and us was noted by the Austrian philosopher Ludwig Wittgenstein, when he famously declared, “If a lion could talk, we could not understand him.” Some scholars were offended, complaining that Wittgenstein had no idea of the subtleties of animal communication, but the crux of his aphorism was that since our own experiences are so unlike a lion’s, we would fail to understand the king of fauna even if he spoke our tongue. In fact, Wittgenstein’s reflections extended to people in strange cultures with whom we, even if we know their language, fail to “find our feet.”
4
His point was our limited ability to enter the inner lives of others, whether they are foreign humans or different organisms.

Rather than tackle this intractable problem, I will focus on the world that animals live in, and how they navigate its complexity. Even though we can’t feel what they feel, we can still try to step outside our own narrow
Umwelt
and apply our imagination to theirs. In fact, Nagel could never have written his incisive reflections had he not heard of the echolocation of bats, which had been discovered only because scientists did try to imagine what it is like to be a bat and did in fact succeed. It is one of the triumphs of our species’ thinking outside its perceptual box.

As a student, I listened in amazement as Sven Dijkgraaf, the head of my department at the University of Utrecht, told the story of how, at about my age, he was one of only a handful of people in the world who was able to hear the faint clicks that accompany a bat’s ultrasonic vocalizations. The professor had extraordinary hearing. It had been known for more than a century that a blinded bat can still find its way around and safely land on walls and ceilings, whereas a deafened one cannot. A bat without hearing is like a human without sight. No one fully understood how this worked, and bats’ abilities were unhelpfully attributed to a “sixth sense.” Scientists don’t believe in extrasensory perception, however, and Dijkgraaf had to come up with an alternative explanation. Since he could detect a bat’s calls, and had noticed that the rate increased when bats encountered obstacles, he suggested that the calls help them traverse their environment. But there was always a tone of regret in his voice about the lack of recognition he had received as the discoverer of echolocation.

This honor had gone to Donald Griffin, and rightly so. Assisted by equipment that could detect sound waves above the 20 kHz range of human hearing, this American ethologist had conducted the ultimate experiments, which furthermore demonstrated that echolocation is more than just a collision warning system. Ultrasound serves to find and pursue prey, from large moths to little flies. Bats possess an astonishingly versatile hunting tool.

No wonder Griffin became an early champion of animal cognition—a term considered an oxymoron until well into the 1980s—because what else is cognition but information processing?
Cognition
is the mental transformation of sensory input into knowledge about the environment and the flexible application of this knowledge. While the term
cognition
refers to the process of doing this,
intelligence
refers more to the ability to do it successfully. The bat works with plenty of sensory input, even if it remains alien to us. Its auditory cortex evaluates sounds bouncing off objects, then uses this information to calculate its distance to the target as well as the target’s movement and speed. As if this weren’t complex enough, the bat also corrects for its own flight path and distinguishes the echoes of its own vocalizations from those of nearby bats: a form of self-recognition. When insects evolved hearing in order to evade bat detection, some bats responded with “stealth” vocalizations below the hearing level of their prey.

What we have here is a most sophisticated information-processing system backed by a specialized brain that turns echoes into precise perception. Griffin had followed in the footsteps of the pioneering experimentalist Karl von Frisch, who had discovered that honeybees use a waggle dance to communicate distant food locations. Von Frisch once said, “The life of the bee is like a magic well, the more you draw from it, the more there is to draw.”
5
Griffin felt the same about echolocation, seeing this capacity as yet another inexhaustible source of mystery and wonder. He called it, too, a magic well.
6

Since I work with chimpanzees, bonobos, and other primates, people usually don’t give me a hard time when I speak of cognition. After all, people are primates, too, and we process our surroundings in similar ways. With our stereoscopic vision, grasping hands, ability to climb and jump, and emotional communication via facial muscles, we inhabit the same
Umwelt
as other primates. Our children play on “monkey bars,” and we call imitation “aping,” precisely because we recognize these similarities. At the same time, we feel threatened by primates. We laugh hysterically at apes in movies and sitcoms, not because they are inherently funny—there are much funnier-looking animals, such as giraffes and ostriches—but because we like to keep our fellow primates at arm’s length. It is similar to how people in neighboring countries, who resemble each other most, joke about each other. The Dutch find nothing to laugh at in the Chinese or the Brazilians, but they relish a good joke about the Belgians.

But why stop at the primates when we are considering cognition? Every species deals flexibly with the environment and develops solutions to the problems it poses. Each one does it differently. We had better use the plural to refer to their capacities, therefore, and speak of intelligence
s
and cognition
s
. This will help us avoid comparing cognition on a single scale modeled after Aristotle’s
scala naturae
, which runs from God, the angels, and humans at the top, downward to other mammals, birds, fish, insects, and mollusks at the bottom. Comparisons up and down this vast ladder have been a popular pastime of cognitive science, but I cannot think of a single profound insight it has yielded. All it has done is make us measure animals by human standards, thus ignoring the immense variation in organisms’
Umwelten
. It seems highly unfair to ask if a squirrel can count to ten if counting is not really what a squirrel’s life is about. The squirrel is very good at retrieving hidden nuts, though, and some birds are absolute experts. The Clark’s nutcracker, in the fall, stores more than twenty thousand pine nuts, in hundreds of different locations distributed over many square miles; then in winter and spring it manages to recover the majority of them.
7

That we can’t compete with squirrels and nutcrackers on this task—I even forget where I parked my car—is irrelevant, since our species does not need this kind of memory for survival the way forest animals braving a freezing winter do. We don’t need echolocation to orient ourselves in the dark; nor do we need to correct for the refraction of light between air and water as archerfish do while shooting droplets at insects above the surface. There are lots of wonderful cognitive adaptations out there that we don’t have or need. This is why ranking cognition on a single dimension is a pointless exercise. Cognitive evolution is marked by many peaks of specialization. The ecology of each species is key.

The last century has seen ever more attempts to enter the
Umwelt
of other species, reflected in book titles such as
The Herring Gull’s World
,
The Soul of the Ape
,
How Monkeys See the World
,
Inside a Dog
, and
Anthill
, in which E. O. Wilson, in his inimitable fashion, offers an ant’s-eye view of the social life and epic battles of ants.
8
Following in the footsteps of Kafka and Uexküll, we are trying to get under the skin of other species, trying to understand them on their terms. And the more we succeed, the more we discover a natural landscape dotted with magic wells.

Six Blind Men and the Elephant

Cognition research is more about the possible than the impossible. Nevertheless, the
scala naturae
view has tempted many to conclude that animals lack certain cognitive capacities. We hear abundant claims along the lines of “only humans can do this or that,” referring to anything from looking into the future (only humans think ahead) and being concerned for others (only humans care about the well-being of others) to taking a vacation (only humans know leisure time). The last claim once had me, to my own amazement, debating a philosopher in a Dutch newspaper about the difference between a tourist tanning on the beach and a napping elephant seal. The philosopher considered the two to be radically different.

Other books

Sorority Sisters by Claudia Welch
Orion by Cyndi Goodgame
A Dangerous Fiction by Barbara Rogan
Nessa Connor by Nessa Connor
This Must Be the Place by Anna Winger
Death Angel's Shadow by Wagner, Karl Edward