Física de lo imposible (31 page)

Read Física de lo imposible Online

Authors: Michio Kaku

Tags: #Divulgación Científica

La cosechadora de antimateria se basa en tres esferas concéntricas, hecha cada una de ellas de una red reticular de cables. La esfera exterior tendría 16 kilómetros de diámetro y estaría cargada positivamente, de modo que repelería a los protones, que tienen carga positiva, pero atraería a los antiprotones, que tienen carga negativa. Los antiprotones serían recogidos por la esfera exterior, luego frenados cuando atravesaran la segunda esfera y finalmente detenidos cuando alcanzaran la esfera más interior, que tendría 100 metros de diámetro. Después los antiprotones serían capturados en una botella magnética y combinados con antielectrones para formar antihidrógeno.

Jackson cree que reacciones controladas de materia-antimateria dentro de una cápsula espacial podrían impulsar un velero espacial hasta Plutón utilizando solamente 30 miligramos de antimateria. Según Jackson, 17 gramos de antimateria serían suficientes para alimentar una nave estelar hasta Alfa Centauri. Jackson afirma que podría haber 80 gramos de antimateria entre las órbitas de Venus y de Marte que podrían ser cosechados por la sonda espacial. No obstante, dadas las complejidades y el coste de lanzar este enorme recogedor de antimateria, probablemente no se realizará hasta finales de este siglo, o más allá.

Algunos científicos han soñado con cosechar antimateria procedente de un meteorito flotante en el espacio exterior. (El cómic Flash Gordon presentó en una ocasión un raro meteorito de antimateria vagando por el espacio, lo que daría lugar a una tremenda explosión si entrara en contacto con cualquier materia).

Si no se encuentra en el espacio antimateria en forma natural, tendremos que esperar décadas o incluso siglos antes de que podamos producir cantidades significativamente grandes de antimateria en la Tierra. Pero suponiendo que puedan resolverse los problemas técnicos de producir antimateria, esto deja abierta la posibilidad de que algún día cohetes de antimateria puedan llevarnos a las estrellas.

Por lo que sabemos hoy de la antimateria, y la evolución previsible de esta tecnología, yo clasificaría una nave con cohete de antimateria como una imposibilidad de clase I.

El fundador de la antimateria

¿Qué es la antimateria? Parece extraño que la naturaleza duplicara el número de partículas subatómicas en el universo sin una buena razón. En general, la naturaleza es muy ahorradora, pero ahora que conocemos la antimateria, la naturaleza parece extraordinariamente redundante y derrochadora. Y si la antimateria existe, ¿pueden existir también antiuniversos?

Para responder a estas preguntas hay que investigar el origen de la propia antimateria. El descubrimiento de la antimateria se remonta realmente a 1928, con el trabajo pionero de Paul Dirac, uno de los tísicos más brillantes del siglo XX. Ocupó la cátedra Lucasiana de la Universidad de Cambridge, la misma que había ocupado Newton, y la que actualmente ocupa Stephen Hawking. Dirac, nacido en 1902, era un hombre alto y delgado que tenía poco más de veinte años cuando estalló la revolución cuántica en 1925. Aunque entonces estaba estudiando ingeniería eléctrica, se vio arrastrado enseguida interés que despertó la teoría cuántica.

La teoría cuántica se basaba en la idea de que las partículas como los electrones podían describirse no como partículas puntuales, sino como un tipo de onda, descrita por la famosa ecuación de ondas de Schródinger. (La onda representa la probabilidad de encontrar la partícula en dicho punto).

Pero Dirac se dio cuenta de que había un defecto en la ecuación de Schródinger. Esta describía solo electrones que se movían a bajas velocidades. A velocidades más altas la ecuación fallaba, porque no obedecía las leyes de los objetos que se mueven a altas velocidades, es decir, las leyes de la relatividad encontradas por Albert Einstein.

Para el joven Dirac, el desafío estaba en reformular la ecuación de Schródinger para adaptarla a la teoría de la relatividad. En 1928 Dirac propuso una modificación radical de la ecuación de Schródinger que obedecía plenamente a la teoría de la relatividad de Einstein. El mundo de la física quedó sorprendido. Dirac encontró su famosa ecuación relativista para el electrón simplemente manipulando unos objetos matemáticos superiores llamados espinores Una curiosidad matemática se convertía repentinamente en una pieza central del universo entero. (A diferencia de muchos físicos antes de él, que insistían en que los grandes avances en la física estarían firmemente basados en datos experimentales, Dirac siguió la estrategia opuesta. Para él, las matemáticas puras, si eran lo bastante bellas, eran una guía segura para grandes avances. Escribió: «Tener belleza en las ecuaciones es más importante que el hecho de que encajen con los experimentos [...] Si uno trabaja pensando en la belleza de las ecuaciones, y si tiene una idea realmente válida, está en una línea de avance segura»).
[66]

Al desarrollar su nueva ecuación para el electrón, Dirac comprendió que la famosa ecuación de Einstein
E = mc
2
no era completamente correcta. Aunque aparece por todas partes, en los anuncios de Madison Avenue, camisetas de niño, dibujos e incluso las vestimentas de los superhéroes, la ecuación de Einstein es solo parcialmente correcta. La ecuación correcta es en realidad
E = ±mc
2
. (Este signo menos aparece porque tenemos que tomar la raíz cuadrada de cierta cantidad. Tomar la raíz cuadrada de una cantidad introduce siempre un más o menos de ambigüedad).

Pero los físicos aborrecen la energía negativa. Hay un axioma de la física que afirma que los objetos tienden siempre al estado de mínima energía (esta es la razón de que el agua busque siempre el nivel más bajo, el nivel del mar). Puesto que la materia siempre cae a su estado de mínima energía, la perspectiva de una energía negativa era potencialmente desastrosa. Significaba que todos los electrones caerían al final en un estado de energía negativa infinita, de modo que la teoría de Dirac sería inestable. Por ello, Dirac inventó el concepto de «mar de Dirac». Imaginó que todos los estados de energía negativa ya estaban llenos, y por ello un electrón no podía caer a energía negativa. Con ello, el universo era estable. Además, un rayo gamma podría colisionar ocasionalmente con un electrón en un estado de energía negativa y lanzarlo a un estado de energía positiva. Entonces veríamos al rayo gamma convertirse en un electrón y un «agujero» creado en el mar de Dirac. Este agujero actuaría como una burbuja en el vacío; es decir, tendría una carga positiva y la misma masa que el electrón original. En otras palabras, el agujero se comportaría como un antielectrón. De modo que, en esta imagen, la antimateria consiste en «burbujas» en el mar de Dirac.

Solo unos años después de que Dirac hiciera esta sorprendente predicción, Cari Anderson descubrió realmente el antielectrón (por el que Dirac ganó el premio Nobel en 1933).

En otras palabras, la antimateria existe porque la ecuación de Dirac tiene dos tipos de soluciones, una para la materia y otra para la antimateria. (Y esto, a su vez, es producto de la relatividad especial).

La ecuación de Dirac no solo predecía la existencia de antimateria; también predecía el «espín» del electrón. Las partículas subatómicas pueden girar, de forma muy similar a una peonza. El espín del electrón, a su vez, es crucial para entender el flujo de electrones en transistores y semiconductores, que forman la base de la electrónica moderna.

Stephen Hawking lamenta que Dirac no patentara su ecuación. «Dirac hubiera hecho una fortuna si hubiese patentado la ecuación de Dirac. Habría tenido una regalía por cada televisor, cada walkman, cada videojuego y cada ordenador», escribe.

Hoy, la famosa ecuación de Dirac está grabada en la piedra de la abadía de Westminster, no lejos de la tumba de Isaac Newton. En todo el mundo, es quizá la única ecuación a la que se le ha dado este honor.

Dirac y Newton

Los historiadores de la ciencia que tratan de entender cómo llegó Dirac a esta ecuación revolucionaria y al concepto de antimateria le han comparado a menudo con Newton. Es curioso que Newton y Dirac compartieran varias similitudes. Ambos tenían poco más de veinte años cuando hicieron su trabajo seminal en la Universidad de Cambridge, ambos eran maestros en las matemáticas, y ambos tenían una característica común: una falta total de habilidades sociales que llegaba a lo patológico. Ambos eran famosos por su incapacidad para entablar una mínima conversación y participar en sencillas actividades sociales. Lacónico en extremo, Dirac nunca decía nada a menos que se le preguntase directamente, y entonces contestaba «sí», o «no», o «no lo sé».

Dirac también era modesto en extremo y detestaba la publicidad. Cuando fue galardonado con el premio Nobel de Física consideró seriamente la idea de rechazarlo por la notoriedad y las molestias que le supondría. Pero cuando se le hizo notar que rechazar el premio Nobel generaría aún más publicidad, decidió aceptarlo.

Se han escrito muchos volúmenes sobre la personalidad peculiar de Newton, con hipótesis que van desde el envenenamiento por mercurio hasta la enfermedad mental. Pero recientemente el psicólogo de Cambridge Simon Baron-Cohen ha propuesto una nueva teoría que podría explicar las extrañas personalidades de Newton y Dirac. Baron-Cohen afirma que probablemente sufrían del síndrome de Asperger, que es afín al autismo, como el idiota sabio en la película
El hombre de la lluvia
. Los individuos que sufren de Asperger son tristemente reticentes, socialmente complicados y suelen estar dotados de una gran habilidad para el cálculo, pero, a diferencia de los individuos autistas, son funcionales en sociedad y pueden ocupar puestos productivos. Si esta teoría es cierta, entonces quizá la milagrosa potencia de cálculo de Newton y Dirac tuvo un precio: estar socialmente apartados del resto de la humanidad.

Antigravedad y antiuniversos

Utilizando la teoría de Dirac, podemos responder ahora a muchas preguntas: ¿cuál es la contrapartida de antimateria para la gravedad? ¿Existen antiuniversos?

Como se ha expuesto, las antipartículas tienen carga opuesta a la de la materia ordinaria. Pero las partículas que no tienen carga (tales como el fotón, una partícula de luz, o el graviten, que es una partícula de gravedad) pueden ser su propia antipartícula. Vemos que la gravitación es su propia antimateria; en otras palabras, gravedad y antigravedad son lo mismo. Por ello, la antimateria sometida a la gravedad debería caer, no subir. (Esto es lo que creen universalmente los físicos, pero nunca se ha demostrado realmente en el laboratorio).

La teoría de Dirac también responde a las profundas preguntas: ¿Por qué la naturaleza admite antimateria? ¿Significa eso que existen antiuniversos?

En algunas historias de ciencia ficción, el protagonista descubre un nuevo planeta similar a la Tierra en el espacio exterior. En realidad, el nuevo planeta parece idéntico a la Tierra, excepto en que todo está hecho de antimateria. Tenemos gemelos de antimateria en este planeta, con antiniños, que viven en anticiudades. Puesto que las leyes de la antiquímica son las mismas que las leyes de la química, salvo que las cargas están invertidas, la gente que viviera en semejante mundo nunca sabría que estaba hecha de antimateria. (Los físicos llaman a esto un universo con inversión de carga o C-invertido, puesto que todas las cargas están invertidas en este antiuniverso pero todo lo demás permanece igual).

En otras historias de ciencia ficción los científicos descubren un gemelo de la Tierra en el espacio exterior, excepto que es un universo espejo, donde todo está invertido izquierda-derecha. El corazón de todo el mundo está en el lado derecho y la mayoría de la gente es zurda. Viven su vida sin saber que viven en un universo espejo invertido izquierda-derecha. (Los físicos llaman a semejante universo espejo un universo con inversión de paridad o P-invertido).

¿Pueden existir realmente tales universos de antimateria y con inversión de paridad? Los físicos toman muy en serio las preguntas sobre universos gemelos porque las ecuaciones de Newton y de Einstein permanecen iguales cuando simplemente cambiamos las cargas en todas nuestras partículas subatómicas o invertimos la orientación izquierda-derecha. Por ello, los universos C-invertidos y P-invertidos son en principio posibles.

El premio Nobel Richard Feynman planteó una interesante cuestión sobre estos universos. Supongamos que un día entramos en contacto por radio con alienígenas en un planeta lejano pero no podemos verles. ¿Podemos explicarles por radio la diferencia entre «izquierda» y «derecha»?, preguntaba. Si las leyes de la física permiten un universo P-invertido, entonces debería ser imposible transmitir estos conceptos.

Ciertas cosas, razonaba, son fáciles de comunicar, tales como la forma de nuestro cuerpo y el número de nuestros dedos, brazos y piernas. Podríamos incluso explicar a los alienígenas las leyes de la química y la biología. Pero si tratáramos de explicarles el concepto de «izquierda» y «derecha» (o «sentido horario» y «sentido antihorario»), fracasaríamos siempre. Nunca seríamos capaces de explicarles que nuestro corazón está en el lado derecho de nuestro cuerpo, en qué dirección rota la Tierra o la forma en que se retuercen en espiral las moléculas de ADN.

Por eso se produjo una especie de conmoción cuando C. N. Yang y T. D. Lee, ambos entonces en la Universidad de Columbia, refutaron este querido teorema. Al examinar la naturaleza de las partículas subatómicas demostraron que el universo espejo P-invertido no puede existir. Un físico, al saber de este resultado revolucionario, dijo: «Dios debe de haber cometido un error». Por este resultado impresionante, llamado la «violación de la paridad», Yang y Lee ganaron el premio Nobel de Física en 1957.

Para Feynman, esta conclusión significaba que si uno estuviera hablando por radio con los alienígenas, podría diseñar un experimento que le permitiría establecer la diferencia entre universos zurdos y diestros solo por radio. (Por ejemplo, si medimos el espín de los electrones emitidos por el cobalto-60 radiactivo, encontramos que no giran tantos en sentido horario como en sentido antihorario, sino que realmente hay un sentido de giro preferido, lo que rompe la paridad).

Feynman imaginó entonces que al final tiene lugar un encuentro histórico entre los alienígenas y la humanidad. Nosotros decimos a los alienígenas que deben extender la mano derecha cuando nos encontremos por primera vez y nos demos la mano. Si los alienígenas realmente extienden la mano derecha, entonces sabemos que les hemos comunicado con éxito el concepto de «izquierda-derecha» y «horario-antihorario».

Other books

Hard as Steel by Jenika Snow, Sam Crescent
Lugares donde se calma el dolor by Cesar Antonio Molina
The Pizza Mystery by Gertrude Chandler Warner
Angel of Mercy by McCallister, Jackie
Efecto Mariposa by Aurora Seldon e Isla Marín