Authors: Mary Roach
I have never before seen major surgery, only its scars. From the length of them, I had imagined surgeons doing their business, taking things out and putting them in, through an opening maybe eight or nine inches long, like a woman poking around for her glasses at the bottom of her purse. Dr. Posselt begins just above H's pubic hair and proceeds a good two feet north, to the base of her neck. He's unzipping her like a parka.
Her sternum is sawed lengthwise so that her rib cage can be parted, and a large retractor is installed to pull the two sides of the incision apart so that it is now as wide as it is long. To see her this way, held open like a Gladstone bag, forces a view of the human torso for what it basically is: a large, sturdy container for guts.
On the inside, H looks very much alive. You can see the pulse of her heartbeat in her liver and all the way down her aorta. She bleeds where she is cut and her organs are plump and slippery-looking. The electronic beat of the heart monitor reinforces the impression that this is a living, breathing, thriving person. It is strange, almost impossible, really, to think of her as a corpse. When I tried to explain beating-heart cadavers to my stepdaughter Phoebe yesterday, it didn't make sense to her. But if their heart is beating, aren't they still a person? she wanted to know. In the end she decided they were "a kind of person you could play tricks on but they wouldn't know." Which, I think, is a pretty good way of summing up most donated cadavers. The things that happen to the dead in labs and ORs are like gossip passed behind one's back. They are not felt or known and so they cause no pain.
The contradictions and counterintuitions of the beating-heart cadaver can exact an emotional toll on the intensive care unit (ICU) staff, who must, in the days preceding the harvest, not only think of patients like H as living beings, but treat and care for them that way as well. The cadaver must be monitored around the clock and "life-saving" interventions undertaken on its behalf. Since the brain can no longer regulate blood pressure or the levels of hormones and their release into the bloodstream, these things must be done by ICU staff, in order to keep the organs from degrading. Observed a group of Case Western Reserve University School of Medicine physicians in a
New England Journal of Medicine
article entitled "Psychosocial and Ethical Implications of Organ Retrieval":
"Intensive care unit personnel may feel confused about having to perform cardiopulmonary resuscitation on a patient who has been declared dead, whereas a 'do not resuscitate' order has been written for a living patient in the next bed."
The confusion people feel over beating-heart cadavers reflects centuries of confusion over how, exactly, to define death, to pinpoint the precise moment when the spirit—the soul, the chi, whatever you wish to call it—
has ceased to exist and all that remains is a corpse. Before brain activity could be measured, the stopping of the heart had long been considered the defining moment. In point of fact, the brain survives for six to ten minutes after the heart has stopped pumping blood to it, but this is splitting hairs, and the definition works quite well for the most part. The problem, for centuries, was that doctors couldn't tell for sure whether the heart had ceased to beat or whether they were merely having trouble hearing it. The stethoscope wasn't invented until the mid-1800s, and the early models amounted to little more than a sort of medical ear trumpet.
In cases where the heartbeat and pulse are especially faint—drownings, stroke, certain types of narcotic poisoning—even the most scrupulous physician had difficulty telling, and patients ran the risk of being dispatched to the undertaker before they'd actually expired.
To allay patients' considerable fears of live burial, as well as their own insecurities, eighteenth- and nineteenth-century physicians devised a diverting roster of methods for verifying death. Welsh physician and medical historian Jan Bondeson collected dozens of them for his witty and admirably researched book
Buried Alive
. The techniques seemed to fall into two categories: those that purported to rouse the unconscious patient with unspeakable pain, and those that threw in a measure of humiliation. The soles of the feet were sliced with razors, and needles jammed beneath toenails. Ears were assaulted with bugle fanfares and
"hideous Shrieks and excessive Noises." One French clergyman recommended thrusting a red-hot poker up what Bondeson genteelly refers to as "the rear passage." A French physician invented a set of nipple pincers specifically for the purpose of reanimation. Another invented a bagpipelike contraption for administering tobacco enemas, which he demonstrated enthusiastically on cadavers in the morgues of Paris. The seventeenth-century anatomist Jacob Winslow entreated his colleagues to pour boiling Spanish wax on patients' foreheads and warm urine into their mouths. One Swedish tract on the matter suggested that a crawling insect be put into the corpse's ear. For simplicity and originality, though, nothing quite matches the thrusting of "a sharp pencil" up the presumed cadaver's nose.
In some cases, it is unclear who was the more humiliated, patient or doctor. French physician Jean Baptiste Vincent Laborde wrote at great length of his technique of rhythmic tongue-pulling, which was to be carried out for no less than three hours following the suspected death.
(He later invented a hand-cranked tongue-pulling machine, which made the task less unpleasant though only marginally less tedious.) Another French physician instructed doctors to stick one of the patient's fingers in their ear, to listen for the buzzing sound produced by involuntary muscle movement.
Not all that surprisingly, none of these techniques gained wide acceptance, and most doctors felt that putrefaction was the only reliable way to verify that someone was dead. This meant that corpses had to sit around the house or the doctor's office for two or three days until the telltale signs and smells could be detected, a prospect perhaps even less appealing than giving them enemas. And so it was that special buildings, called waiting mortuaries, were built for the purpose of warehousing the moldering dead. These were huge, ornate halls, common in Germany in the 1800s. Some had separate halls for male and female cadavers, as though, even in death, men couldn't be trusted to comport themselves respectably in the presence of a lady. Others were segregated by class, with the well-to-do deceased paying extra to rot in luxury surroundings.
Attendants were employed to keep watch for signs of life, which they did via a system of strings linking the fingers of corpses to a bell
[1]
or, in one case, the bellows of a large organ, so that any motion on the part of the deceased would alert the attendant, who was posted, owing to the considerable stench, in a separate room. As years passed and not a single resident was saved, the establishments began to close, and by 1940, the waiting mortuary had gone the way of the nipple pincer and the tongue puller.
If only the soul could be seen as it left the body, or somehow measured.
That way, determining when death had occurred would be a simple matter of scientific observation. This almost became a reality, at the hands of a Dr. Duncan Macdougall, of Haverhill, Massachusetts. In 1907, Macdougall began a series of experiments seeking to determine whether the soul could be weighed. Six dying patients, one after another, were installed on a special bed in Macdougall's office that sat upon a platform beam scale sensitive to two-tenths of an ounce. By watching for changes in the weight of a human being before, and in the act of, dying, he sought to prove that the soul had substance. Macdougall's report of the experiment was published in the April 1907 issue of
American Medicine
, considerably livening up the usual assortment of angina and urethritis papers. Below is Macdougall describing the first subject's death. He was nothing if not thorough.
At the end of three hours and forty minutes he
expired and suddenly coincident with death the
beam end dropped with an audible stroke
hitting against the lower limiting bar and
remaining there with no rebound. The loss was
ascertained to be three-fourths of an ounce.
This loss of weight could not be due to
evaporation of respiratory moisture and sweat,
because that had already been determined to go
on, in his case, at the rate of one-sixtieth
of an ounce per minute, whereas this loss was
sudden and large….
The bowels did not move; and if they had moved
the weight would still have remained upon the
bed except for a slow loss by the evaporation
of moisture, depending, of course, upon the
fluidity of the feces. The bladder evacuated
one or two drams of urine. This remained upon
the bed and could only have influenced the
weight by slow gradual evaporation and
therefore in no way could account for the
sudden loss.
There remained but one more channel of loss to
explore, the expiration of all but the
residual air in the lungs. Getting upon the
bed myself, my colleague put the beam at
actual balance. Inspiration and expiration of
air as forcibly as possible by me had no
effect upon the beams….
After watching another five patients shed similar weight as they died, Macdougall moved on to dogs. Fifteen dogs breathed their last without registering a significant drop in weight, which Macdougall took as corroborating evidence, for he assumed, in keeping with his religious doctrine, that animals have no souls. While Macdougall's human subjects were patients of his, there is no explanation of how he came to be in the possession of fifteen dying dogs in so short a span of time. Barring a local outbreak of distemper, one is forced to conjecture that the good doctor calmly poisoned fifteen healthy canines for his little exercise in biological theology.
Macdougall's paper sparked an acrid debate in the
American Medicine
letters column. Fellow Massachusetts doctor Augustus P. Clarke took Macdougall to task for having failed to take into account the sudden rise in body temperature at death when the blood stops being air-cooled via its circulation through the lungs. Clarke posited that the sweating and moisture evaporation caused by this rise in body temperature would account both for the drop in the men's weight and the dogs' failure to register one. (Dogs cool themselves by panting, not sweating.) Macdougall rebutted that without circulation, no blood can be brought to the surface of the skin and thus no surface cooling occurs. The debate went on from the May issue all the way through December, whereupon I lost the thread, my eye having strayed across the page to "A Few Points in the Ancient History of Medicine and Surgery," by Harry H. Grigg, M.D. It is with thanks to Harry H. Grigg that I can now hold forth at cocktail parties on the history of hemorrhoids, gonorrhea, circumcision, and the speculum.[
2]
With improvements in stethoscopes and gains in medical knowledge, physicians began to trust themselves to be able to tell when a heart had stopped, and medical science came to agree that this was the best way to determine whether a patient had checked out for good or was merely down the hall getting ice. Placing the heart center stage in our definition of death served to give it, by proxy, a starring role in our definition of life and the soul, or spirit or self. It has long had this anyway, as evidenced by a hundred thousand love songs and sonnets and I ♥ bumper stickers.
The concept of the beating-heart cadaver, grounded in a belief that the self resides in the brain and the brain alone, delivered a philosophical curveball. The notion of the heart as fuel pump took some getting used to.
The seat-of-the-soul debate has been ongoing some four thousand years.
It started out not as a heart-versus-brain debate, but as heart-versus-liver.
The ancient Egyptians were the original heart guys. They believed that the ka resided in the heart. Ka was the essence of the person: spirit, intelligence, feelings and passions, humor, grudges, annoying television theme songs, all the things that make a person a person and not a nematode. The heart was the only organ left inside a mummified corpse, for a man needed his ka in the afterlife. The brain he clearly did not need: cadaver brains were scrambled and pulled out in globs, through the nostrils, by way of a hooked bronze needle. Then they were thrown away. (The liver, stomach, intestines, and lungs were taken out of the body, but kept: They were stored in earthen jars inside the tomb, on the assumption, I guess, that it is better to overpack than to leave something behind, particularly when packing for the afterlife.) The Babylonians were the original liver guys, believing the organ to be the source of human emotion and spirit. The Mesopotamians played both sides of the argument, assigning emotion to the liver and intellect to the heart. These guys clearly marched to the beat of a freethinking drummer, for they assigned a further portion of the soul (cunning) to the stomach.
Similar freethinkers throughout history have included Descartes, who wrote that the soul could be found in the walnut-sized pineal gland, and the Alexandrian anatomist Strato, who decided it lived "behind the eyebrows."
With the rise of classical Greece, the soul debate evolved into the more familiar heart-versus-brain, the liver having been demoted to an accessory role.
[3]
Though Pythagorus and Aristotle viewed the heart as the seat of the soul—the source of "vital force" necessary to live and grow—they believed there to be a secondary, "rational" soul, or mind, located in the brain. Plato agreed that both the heart and the brain were soul terrain, but assigned primacy to the brain. Hippocrates, for his part, seemed confused (or perhaps it's me). He noted the effects of a crushed brain upon speech and intelligence, yet referred to it as a mucus-secreting gland, and wrote elsewhere that intelligence and "heat," which he said controlled the soul, were located in the heart.