Superintelligence: Paths, Dangers, Strategies (34 page)

Read Superintelligence: Paths, Dangers, Strategies Online

Authors: Nick Bostrom

Tags: #Science, #Philosophy, #Non-Fiction

The pace of development after the initial transition would be extremely rapid. Even a short gap between the leading power and its closest competitor could therefore plausibly result in a decisive strategic advantage for the leading power during a second transition. Suppose, for example, that two projects enter the first transition only a few days apart, and that the takeoff is slow enough that this gap does not give the leading project a decisive strategic advantage at any point during the takeoff. The two projects both emerge as superintelligent powers, though one of them remains a few days ahead of the other. But developments are now occurring on the research timescales characteristic of machine superintelligence—perhaps thousands or millions of times faster than research conducted on a biological human timescale. Development of the second-transition technology might therefore be completed in days, hours, or minutes. Even though the frontrunner’s lead is a mere few days, a breakthrough could thus catapult it into a decisive strategic advantage. Note, however, that if technological diffusion (via espionage or other channels) speeds up as much as technological development, then this effect would be negated. What would remain relevant would be the steepness of the second transition, that is, the speed at which it would unfold relative to the general speed of events in the period after the first transition. (In this sense, the faster things are happening after the first transition, the less steep the second transition would tend to be.)

One might also speculate that a decisive strategic advantage would be more likely to be actually used to establish a singleton if it arises during a second (or subsequent) transition. After the first transition, decision makers would either be superintelligent or have access to advice from a superintelligence, which would clarify the implications of available strategic options. Furthermore, the situation after the first transition might be one in which a preemptive move against potential competitors would be less dangerous for the aggressor. If the decision-making minds after the first transition are digital, they could be copied and thereby rendered less vulnerable to a counterattack. Even if a defender had the ability to kill nine-tenths of the aggressor’s population in a retaliatory strike, this would scarcely offer much deterrence if the deceased could be immediately resurrected
from redundant backups. Devastation of infrastructure (which can be rebuilt) might also be tolerable to digital minds with effectively unlimited lifespans, who might be planning to maximize their resources and influence on a cosmological timescale.

Superorganisms and scale economies
 

The size of coordinated human aggregates, such as firms or nations, is influenced by various parameters—technological, military, financial, and cultural—that can vary from one historical epoch to another. A machine intelligence revolution would entail profound changes in many these parameters. Perhaps these changes would facilitate the rise of a singleton. Although we cannot, without looking in detail at what these prospective changes are, exclude the opposite possibility—that the changes would facilitate fragmentation rather than unification—we can nevertheless note that the increased variance or uncertainty that we confront here may itself be a ground for giving greater credence to the potential emergence of a singleton than we would otherwise do. A machine intelligence revolution might, so to speak, stir things up—might reshuffle the deck to make possible geopolitical realignments that seemed perhaps otherwise not to have been in the cards.

A comprehensive analysis of all the factors that may influence the scale of political integration would take us far beyond the scope of this book: a review of the relevant political science and economics literature could itself easily fill an entire volume. We must confine ourselves to making brief allusion to a couple of factors, aspects of the digitization of agents that may make it easier to centralize control.

Carl Shulman has argued that in a population of emulations, selection pressures would favor the emergence of “superorganisms,” groups of emulations ready to sacrifice themselves for the good of their clan.
36
Superorganisms would be spared the agency problems that beset organizations whose members pursue their own self-interest. Like the cells in our bodies, or the individual animals in a colony of eusocial insects, emulations that were wholly altruistic toward their copy-siblings would cooperate with one another even in the absence of elaborate incentive schemes.

Superorganisms would have a particularly strong advantage if nonconsensual deletion (or indefinite suspension) of individual emulations is disallowed. Firms or countries that employ emulations insisting on self-preservation would be saddled with an unending commitment to pay upkeep for obsolete or redundant workers. In contrast, organizations whose emulations willingly deleted themselves when their services were no longer required could more easily adapt to fluctuations in demand; and they could experiment freely, proliferating variations of their workers and retaining only the most productive.

If involuntary deletion is
not
disallowed, then the comparative advantage of eusocial emulations is reduced, though perhaps not eliminated. Employers of
cooperative self-sacrificers might still reap efficiency gains from reduced agency problems throughout the organization, including being spared the trouble of having to defeat whatever resistance emulations could put up against their own deletion. In general, the productivity gains of having workers willing to sacrifice their individual lives for the common weal are a special case of the benefits an organization can derive from having members who are fanatically devoted to it. Such members would not only leap into the grave for the organization, and work long hours for little pay: they would also shun office politics and try consistently to act in what they took to be the organization’s best interest, reducing the need for supervision and bureaucratic constraints.

If the only way to achieve such dedication were by restricting membership to copy-siblings (so that all emulations in a particular superorganism were stamped out from the same template), then superorganisms would suffer some disadvantage in being able to draw only from a range of skills narrower than that of rival organizations, a disadvantage which might or might not be large enough to outweigh the advantages of avoiding internal agency problems.
37
This disadvantage would be greatly alleviated if a superorganism could at least contain members with different training. Even if all its members were derived from a single ur-template, its workforce could then still contribute a diversity of skills. Starting with a polymathically talented emulation ur-template, lineages could be branched off into different training programs, one copy learning accounting, another electrical engineering, and so forth. This would produce a membership with diverse skills though not of diverse talents. (Maximum diversity might require that more than one ur-template be used.)

The essential property of a superorganism is not that it consists of copies of a single progenitor but that all the individual agents within it are fully committed to a common goal. The ability to create a superorganism can thus be viewed as requiring a partial solution to the control problem. Whereas a completely general solution to the control problem would enable somebody to create an agent with any arbitrary final goal, the partial solution needed for the creation of a superorganism requires merely the ability to fashion multiple agents with the same final goal (for some nontrivial but not necessarily arbitrary final goal).
38

The main consideration put forward in this subsection is thus not really limited to monoclonal emulation groups, but can be stated more generally in a way that makes clear that it applies to a wide range of multipolar machine intelligence scenarios. It is that certain types of advances in motivation selection techniques, which may become feasible when the actors are digital, may help overcome some of the inefficiencies that currently hamper large human organizations and that counterbalance economies of scale. With these limits lifted, organizations—be they firms, nations, or other economic or political entities—could increase in size. This is one factor that could facilitate the emergence of a post-transition singleton.

One area in which superorganisms (or other digital agents with partially selected motivations) might excel is coercion. A state might use motivation
selection methods to ensure that its police, military, intelligence service, and civil administration are uniformly loyal. As Shulman notes,

Saved states [of some loyal emulation that has been carefully prepared and verified] could be copied billions of times to staff an ideologically uniform military, bureaucracy, and police force. After a short period of work, each copy would be replaced by a fresh copy of the same saved state, preventing ideological drift. Within a given jurisdiction, this capability could allow incredibly detailed observation and regulation: there might be one such copy for every other resident. This could be used to prohibit the development of weapons of mass destruction, to enforce regulations on brain emulation experimentation or reproduction, to enforce a liberal democratic constitution, or to create an appalling and permanent totalitarianism
39

 

The first-order effect of such a capability would seem to be to consolidate power, and possibly to concentrate it in fewer hands.

Unification by treaty
 

There may be large potential gains to be had from international collaboration in a post-transition multipolar world. Wars and arms races could be avoided. Astrophysical resources could be colonized and harvested at a globally optimum pace. The development of more advanced forms of machine intelligence could be coordinated to avoid a rush and to allow new designs to be thoroughly vetted. Other developments that might pose existential risks could be postponed. And uniform regulations could be enforced globally, including provisions for a guaranteed standard of living (which would require some form of population control) and for preventing exploitation and abuse of emulations and other digital and biological minds. Furthermore, agents with resource-satiable preferences (more on this in
Chapter 13
) would prefer a sharing agreement that would guarantee them a certain slice of the future to a winner-takes-all struggle in which they would risk getting nothing.

The presence of big potential gains from collaboration, however, does not imply that collaboration will actually be achieved. In the world today, many great boons could be obtained via better global coordination—reductions of military expenditures, wars, overfishing, trade barriers, and atmospheric pollution, among others. Yet these plump fruits are left to spoil on the branch. Why is that? What stops a fully cooperative outcome that would maximize the common good?

One obstacle is the difficulty of ensuring compliance with any treaty that might be agreed, including monitoring and enforcement costs. Two nuclear rivals might each be better off if they both relinquished their atom bombs; yet even if they could reach an in-principle agreement to do so, disarmament could nevertheless prove elusive because of their mutual fear that the other party might cheat. Allaying this fear would require setting up a verification mechanism. There may have to be inspectors to oversee the destruction of existing stockpiles, and then to monitor nuclear reactors and other facilities, and to gather technical and
human intelligence, in order to ensure that the weapons program is not reconstituted. One cost is paying for these inspectors. Another cost is the risk that the inspectors will spy and make off with commercial or military secrets. Perhaps most significantly, each party might fear that the other will preserve a clandestine nuclear capability. Many a potentially beneficial deal never comes off because compliance would be too difficult to verify.

If new inspection technologies that reduced monitoring costs became available, one would expect this to result in increased cooperation. Whether monitoring costs would on net be reduced in the post-transition era, however, is not entirely clear. While there would certainly be many powerful new inspection techniques, there would also be new means of concealment. In particular, an increasing portion of the activities one might want to regulate would be taking place in cyberspace, out of reach of physical surveillance. For example, digital minds working on designing a new nanotech weapons system or a new generation of artificial intelligence may do so without leaving much of a physical footprint. Digital forensics may fail to penetrate all the layers of concealment and encryption in which a treaty-violator may cloak its illicit activities.

Reliable lie detection, if it could be developed, would be an extremely useful tool for monitoring compliance.
40
An inspection protocol could include provisions for interviewing key officials, to verify that they are intent on implementing all the provisions of the treaty and that they know of no violations despite making strong efforts to find out.

A decision maker planning to cheat might defeat such a lie-detection-based verification scheme by first issuing orders to subordinates to undertake the illicit activity and to conceal the activity even from the decision maker herself, and then subjecting herself to some procedure that erases her memory of having engaged in these machinations. Suitably targeted memory-erasure operations might well be feasible in biological brains with more advanced neurotechnology. It might be even easier in machine intelligences (depending on their architecture).

States could seek to overcome this problem by committing themselves to an ongoing monitoring scheme that regularly tests key officials with a lie detector to check whether they harbor any intent to subvert or circumvent any treaty to which the state has entered or may enter in the future. Such a commitment could be viewed as a kind of meta-treaty, which would facilitate the verification of other treaties; but states might commit themselves to it unilaterally to gain the benefit of being regarded as a trustworthy negotiation partner. However, this commitment or meta-treaty would face the same problem of subversion through a delegate-and-forget ploy. Ideally, the meta-treaty would be put into effect
before
any party had an opportunity to make the internal arrangements necessary to subvert its implementation. Once villainy has had an unguarded moment to sow its mines of deception, trust can never set foot there again.

Other books

Forbidden by Susan Johnson
THE POWER OF THREE by Mosiman, Billie Sue
Fortress by Andy McNab
Steal My Heart by Eugene, Lisa
Rebel's Cage (Book 4) by Kate Jacoby
Warrior of the Isles by Debbie Mazzuca