Ancient DNA: Methods and Protocols (47 page)

9. It is diffi cult to determine the appropriate settings for the MCMC analysis in advance. Generally, the aim is to draw a suffi cient number of samples in the smallest number of steps, but to draw them infrequently enough so that successive samples are reasonably independent of each other. The default settings in BEAUti include a total sampling period of 10,000,000 steps, with samples drawn every 1,000 steps. For analyses involving large data sets or parameter-rich models, the length of the MCMC should be increased, perhaps to 50,000,000 or more

steps. The sampling frequency should be reduced correspondingly so that the sizes of the output fi les remain manageable.

Suffi cient sampling can be gauged by the ESS for each parameter, as computed in
Tracer
. ESS values can be raised by increasing the number of samples drawn from the MCMC (by increasing the total number of steps and/or decreasing the interval between successive samples), but will be reduced by autocorrelation between successive samples.

10. For very large data sets, some of the programs will encounter memory problems. This is indicated by the Java error message “OutOfMemoryError.” Step-by-step instructions on how to

increase memory allocation are available on the offi cial
BEAST

site (http://beast.bio.ed.ac.uk/).

Acknowledgments

SYWH is supported by the Australian Research Council and by a start-up grant from the University of Sydney. Beth Shapiro provided helpful comments.

240

S.Y.W. Ho

References

1. Pääbo S et al (2004) Genetic analyses from 19. Ho SYW, Phillips MJ (2009) Accounting for ancient DNA. Annu Rev Genet 38:645–679

calibration uncertainty in phylogenetic estima—

2. Ho SYW, Gilbert MTP (2010) Ancient mitog—

tion of evolutionary divergence times. Syst Biol

enomics. Mitochondrion 10:1–11

58:367–380

3. Hofreiter M (2008) Long DNA sequences and

20. Miller HC et al (2009) The evolutionary rate

large data sets: investigating the Quaternary via

of tuatara revisited. Trends Genet 25:13–15

ancient DNA. Quat Sci Rev 27:2586–2592

21. Ho SYW et al (2010) Bayesian estimation of

4. Rogaev EI et al (2006) Complete mitochon—

substitution rates from ancient DNA sequences

drial genome and phylogeny of Pleistocene

with low information content. Syst Biol

mammoth

Mammuthus primigenius
. PLoS

60:366–375

Biol 4:e73

22. de Bruyn M et al (2009) Rapid response of a

5. Willerslev E et al (2009) Analysis of complete

marine mammal species to holocene climate

mitochondrial genomes from extinct and extant

and habitat change. PLoS Genet

rhinoceroses reveals lack of phylogenetic reso—

5:e1000554

lution. BMC Evol Biol 9:95

23. Subramanian S et al (2009) Molecular and

6. Rohland N et al (2007) Proboscidean mitog—

morphological evolution in tuatara are decou—

enomics: chronology and mode of elephant

pled. Trends Genet 25:16–18

evolution using mastodon as outgroup. PLoS 24. Keane TM et al (2006) Assessment of methods Biol 5:e207

for amino acid matrix selection and their use on

7. Drummond AJ et al (2003) Measurably evolv—

empirical data shows that ad hoc assumptions

ing populations. Trends Ecol Evol 18:481–488

for choice of matrix are not justifi ed. BMC

8. Anderson CN et al (2005) Serial SimCoal: a

Evol Biol 6:29

population genetics model for data from mul—

25. Posada D, Crandall KA (1998) Modeltest: test—

tiple populations and points in time.

ing the model of DNA substitution.

Bioinformatics 21:1733–1734

Bioinformatics 14:817–818

9. Yang Z (2007) PAML 4: phylogenetic analysis

26. Luo A et al (2010) Performance of criteria for

by maximum likelihood. Mol Biol Evol

selecting evolutionary models in phylogenetics:

24:1586–1591

a comprehensive study based on simulated

10. Yang Z et al (2007) Tree and rate estimation by

datasets. BMC Evol Biol 10:242

local evaluation of heterochronous nucleotide 27. Rambaut A et al (2009) Accommodating the data. Bioinformatics 23:169–176

effect of ancient DNA damage on inferences of

11. Drummond AJ, Rambaut A (2007) BEAST:

demographic histories. Mol Biol Evol

Bayesian evolutionary analysis by sampling

26:245–248

trees. BMC Evol Biol 7:214

28. Ho SYW et al (2007) Bayesian estimation of

12. Lewis PO, Swofford DL (2001) Back to the

sequence damage in ancient DNA. Mol Biol

future: Bayesian inference arrives in phyloge—

Evol 24:1416–1422

netics. Trends Ecol Evol 16:600–601

29. Binladen J et al (2006) Assessing the fi delity of

13. Kingman JFC (1982) The coalescent. Stoch

ancient DNA sequences amplifi ed from nuclear

Process Appl 13:235–248

genes. Genetics 172:733–741

14. Metropolis N et al (1953) Equations of 30. Brotherton P et al (2007) Novel high-resolu-state calculations for fast computing machines.

tion characterization of ancient DNA reveals C

J Chem Phys 21:1087–1091

> U-type base modifi cation events as the sole

15. Rambaut A, Drummond AJ (2007) Tracer,

cause of post mortem miscoding lesions.

v.1.5. University of Oxford, Oxford

Nucleic Acids Res 35:5717–5728

16. Drummond AJ et al (2002) Estimating muta—

31. Drummond AJ et al (2006) Relaxed phyloge—

tion parameters, population history and gene—

netics and dating with confi dence. PLoS Biol

alogy simultaneously from temporally spaced

4:e88

sequence data. Genetics 161:1307–1320

32. Ho SYW (2009) An examination of phyloge—

17. Rambaut A (2000) Estimating the rate of

netic models of substitution rate variation

molecular evolution: incorporating non-con—

among lineages. Biol Lett 5:421–424

temporaneous sequences into maximum likeli—

33. Drummond AJ, Suchard MA (2010) Bayesian

hood phylogenies. Bioinformatics 16:395–399

random local clocks, or one rate to rule them

18. Shapiro B et al (2010) A Bayesian method to

all. BMC Biol 8:114

estimate unknown sequence ages in a phyloge—

34. Drummond AJ et al (2005) Bayesian coales—

netic context. Mol Biol Evol 28:879–887

cent inference of past population dynamics

24 Phylogenetic Analysis of Ancient DNA using
BEAST

241

from molecular sequences. Mol Biol Evol 38. Lartillot N, Philippe H (2006) Computing 22:1185–1192

Bayes factors using thermodynamic integra—

35. Minin VN, Bloomquist EW, Suchard MA (2008)

tion. Syst Biol 55:195–207

Smooth skyride through a rough skyline: 39. Xie W et al (2011) Improving marginal likeli-Bayesian coalescent-based inference of popula—

hood estimation for Bayesian phylogenetic

tion dynamics. Mol Biol Evol 25:1459–1471

model selection. Syst Biol 60:150–160

36. Ho SYW, Shapiro B (2011) Skyline-plot meth—

40. Yang Z, Rannala B (2006) Bayesian estimation

ods for estimating demographic history from

of species divergence times under a molecular

nucleotide sequences. Mol Ecol Resour

clock using multiple fossil calibrations with soft

11:423–434

bounds. Mol Biol Evol 23:212–226

37. Suchard MA, Weiss RE, Sinsheimer JS (2001)

41. Ho SYW (2007) Calibrating molecular esti—

Bayesian selection of continuous-time Markov

mates of substitution rates and divergence

chain evolutionary models. Mol Biol Evol

times in birds. J Avian Biol 38:409–414

18:1001–1013

sdfsdf

INDEX

A

Bleach .. ...................................8 , 9, 14, 15, 44, 45, 47, 52, 66, 67, 75, 77, 103

Abasic site ........................................................................ 1 47

Blocking lesion ............................................................ 3 , 145

Adaptor (or adapter)

Bone ......................................... 3 , 5, 8–10, 15, 18, 21, 22, 24, artifacts ..............................................1 53, 198, 204–206, 29, 31, 34, 37, 41, 43, 65, 87–90, 94–97, 102, 123,

209, 212, 215

127, 132, 134, 171, 172, 190

double_multiplex ............................................... 2 04, 205

Bottle gourd ........................................................... 7 3, 76, 77

ligation ......................................... 6 9, 151, 152, 156, 157, Bovine serum albumin (BSA) ..............................8, 112, 124, 161–162, 166, 169

126, 135–137

PCR ............................................ 1 50, 165, 172, 173, 181

Bst polymerase .......................... 1 46, 149, 152, 163, 166, 184

Aerosols ................................................1 4, 66, 114, 124, 131

Burn-in .................................................................... 2 35, 236

Africa ... .....................................................1 02, 103, 107, 175

Agarose. ..............................5 3, 105, 113, 115, 116, 127, 131, C

135, 138, 184, 190, 193

Carrier DNA ..............................................6 , 8, 10, 117, 139

Alignment ................................. 5 4, 194, 206, 209, 212–214, Cetyl trimethyl ammonium bromide

216–221, 224, 225, 230–233

(CTAB) ..................................................... 72–75, 77

Aliquot .................................1 9, 24, 39–41, 95, 96, 112, 118, Chaotropic

123, 124, 127, 130, 149

non- ....................................................................... 97, 98

Amino acid racemization .....................................................5

Chimpanzee ............................................................ 1 01–109

Amplicon ................................. 1 21, 122, 124, 128–131, 164, Chitinous ..................................................................... 4 3, 45

167, 178, 181, 186

Chloroform .......................................... 1 3–19, 44, 46, 48, 52, Archaeological ....................................................... 6 9, 71, 72

58–60, 72–74, 76, 77, 82–84, 87

Arthropod .............................................................. 4 5, 94, 98

Cleanroom ....................................................... 1 44, 147, 152

Artifact ............................................ 1 12, 153, 157, 164, 181, Clonal sequence ............................................................... 1 07

198, 201, 204–206, 209, 212, 215, 223, 224

Cloning .............................................. 2 , 5, 6, 53, 89, 90, 105, Authentication

111–118, 128, 171, 193

authentic DNA .............................................. 4 , 123, 190

ClustalW ........................................................................ 1 05

authenticity ............................... 5 , 90, 105, 112, 145, 194

Color-space ..................................................................... 2 23

B

Columns ...................................2 2–27, 31, 34, 44, 46, 47, 58, 61, 66–69, 98, 139, 145, 148–150, 161, 162, 165,

Barcode

184, 186, 187, 201, 202, 219, 233

barcoded ............. 1 34, 144, 155–170, 172–174, 190, 200

Concentrator(s) ..................................................... 15, 16, 48

barcoding ................................... 1 38, 155–157, 165, 168, Contaminant(s) ....................................... 3–9, 18, 19, 27, 45, 172, 173, 200, 201

55, 62, 88, 89, 99, 106, 112, 117, 118, 178, 198, 213,

Base-modifications .......................................2 , 144, 145, 178

217–220

Bayesian .......................................... 3 2, 33, 35, 230–235, 238

Contamination

BEAST ................................................................... 2 29–239

contaminated .....................................3 –5, 7–10, 22, 118, BioEdit .............................................................. 5 3, 105, 192

139, 140, 217

Biotin.. ...................................... 1 58, 159, 180, 181, 183, 185

criteria for authenticity ..................................................5

dUTP .................................................1 82, 185, 187, 191

cross-contamination ............................ 5 , 14, 59, 98, 106, Biotinylated ...................... 1 56, 158, 159, 180–184, 187, 191

109, 127, 136, 152, 157, 187

BlastSearch ...................................................................... 1 05

Coprolite ..................................................................... 3 7, 73

Beth Shapiro and Michael Hofreiter (eds.),
Ancient DNA: Methods and Protocols
, Methods in Molecular Biology, vol. 840, DOI 10.1007/978-1-61779-516-9, © Springer Science+Business Media, LLC 2012

243

244 ANCIENT DNA: METHODS AND PROTOCOLS

 

Index

Covaris ............................................................................ 1 82

extraction from paleofeces ............................... 3 7–42, 51

Criteria of authenticity ........................................................5

extraction via silica columns ........................................3 4

CTAB .
See
Cetyl trimethyl ammonium bromide (CTAB) phenol-chloroform extraction .................... 1 3–19, 73, 87

Other books

Dead is Better by Jo Perry
Nomads of Gor by John Norman
Sharing the Sheets by Natalie Weber
Redcap by Philip McCutchan
Anilyia by Carroll, John H.
Westlake, Donald E - Novel 50 by Sacred Monster (v1.1)
Strictly Stuck by Crystal D. Spears