Read Ancient DNA: Methods and Protocols Online
Authors: Beth Shapiro
9. It is diffi cult to determine the appropriate settings for the MCMC analysis in advance. Generally, the aim is to draw a suffi cient number of samples in the smallest number of steps, but to draw them infrequently enough so that successive samples are reasonably independent of each other. The default settings in BEAUti include a total sampling period of 10,000,000 steps, with samples drawn every 1,000 steps. For analyses involving large data sets or parameter-rich models, the length of the MCMC should be increased, perhaps to 50,000,000 or more
steps. The sampling frequency should be reduced correspondingly so that the sizes of the output fi les remain manageable.
Suffi cient sampling can be gauged by the ESS for each parameter, as computed in
Tracer
. ESS values can be raised by increasing the number of samples drawn from the MCMC (by increasing the total number of steps and/or decreasing the interval between successive samples), but will be reduced by autocorrelation between successive samples.
10. For very large data sets, some of the programs will encounter memory problems. This is indicated by the Java error message “OutOfMemoryError.” Step-by-step instructions on how to
increase memory allocation are available on the offi cial
BEAST
site (http://beast.bio.ed.ac.uk/).
Acknowledgments
SYWH is supported by the Australian Research Council and by a start-up grant from the University of Sydney. Beth Shapiro provided helpful comments.
240
S.Y.W. Ho
References
1. Pääbo S et al (2004) Genetic analyses from 19. Ho SYW, Phillips MJ (2009) Accounting for ancient DNA. Annu Rev Genet 38:645–679
calibration uncertainty in phylogenetic estima—
2. Ho SYW, Gilbert MTP (2010) Ancient mitog—
tion of evolutionary divergence times. Syst Biol
enomics. Mitochondrion 10:1–11
58:367–380
3. Hofreiter M (2008) Long DNA sequences and
20. Miller HC et al (2009) The evolutionary rate
large data sets: investigating the Quaternary via
of tuatara revisited. Trends Genet 25:13–15
ancient DNA. Quat Sci Rev 27:2586–2592
21. Ho SYW et al (2010) Bayesian estimation of
4. Rogaev EI et al (2006) Complete mitochon—
substitution rates from ancient DNA sequences
drial genome and phylogeny of Pleistocene
with low information content. Syst Biol
mammoth
Mammuthus primigenius
. PLoS
60:366–375
Biol 4:e73
22. de Bruyn M et al (2009) Rapid response of a
5. Willerslev E et al (2009) Analysis of complete
marine mammal species to holocene climate
mitochondrial genomes from extinct and extant
and habitat change. PLoS Genet
rhinoceroses reveals lack of phylogenetic reso—
5:e1000554
lution. BMC Evol Biol 9:95
23. Subramanian S et al (2009) Molecular and
6. Rohland N et al (2007) Proboscidean mitog—
morphological evolution in tuatara are decou—
enomics: chronology and mode of elephant
pled. Trends Genet 25:16–18
evolution using mastodon as outgroup. PLoS 24. Keane TM et al (2006) Assessment of methods Biol 5:e207
for amino acid matrix selection and their use on
7. Drummond AJ et al (2003) Measurably evolv—
empirical data shows that ad hoc assumptions
ing populations. Trends Ecol Evol 18:481–488
for choice of matrix are not justifi ed. BMC
8. Anderson CN et al (2005) Serial SimCoal: a
Evol Biol 6:29
population genetics model for data from mul—
25. Posada D, Crandall KA (1998) Modeltest: test—
tiple populations and points in time.
ing the model of DNA substitution.
Bioinformatics 21:1733–1734
Bioinformatics 14:817–818
9. Yang Z (2007) PAML 4: phylogenetic analysis
26. Luo A et al (2010) Performance of criteria for
by maximum likelihood. Mol Biol Evol
selecting evolutionary models in phylogenetics:
24:1586–1591
a comprehensive study based on simulated
10. Yang Z et al (2007) Tree and rate estimation by
datasets. BMC Evol Biol 10:242
local evaluation of heterochronous nucleotide 27. Rambaut A et al (2009) Accommodating the data. Bioinformatics 23:169–176
effect of ancient DNA damage on inferences of
11. Drummond AJ, Rambaut A (2007) BEAST:
demographic histories. Mol Biol Evol
Bayesian evolutionary analysis by sampling
26:245–248
trees. BMC Evol Biol 7:214
28. Ho SYW et al (2007) Bayesian estimation of
12. Lewis PO, Swofford DL (2001) Back to the
sequence damage in ancient DNA. Mol Biol
future: Bayesian inference arrives in phyloge—
Evol 24:1416–1422
netics. Trends Ecol Evol 16:600–601
29. Binladen J et al (2006) Assessing the fi delity of
13. Kingman JFC (1982) The coalescent. Stoch
ancient DNA sequences amplifi ed from nuclear
Process Appl 13:235–248
genes. Genetics 172:733–741
14. Metropolis N et al (1953) Equations of 30. Brotherton P et al (2007) Novel high-resolu-state calculations for fast computing machines.
tion characterization of ancient DNA reveals C
J Chem Phys 21:1087–1091
> U-type base modifi cation events as the sole
15. Rambaut A, Drummond AJ (2007) Tracer,
cause of post mortem miscoding lesions.
v.1.5. University of Oxford, Oxford
Nucleic Acids Res 35:5717–5728
16. Drummond AJ et al (2002) Estimating muta—
31. Drummond AJ et al (2006) Relaxed phyloge—
tion parameters, population history and gene—
netics and dating with confi dence. PLoS Biol
alogy simultaneously from temporally spaced
4:e88
sequence data. Genetics 161:1307–1320
32. Ho SYW (2009) An examination of phyloge—
17. Rambaut A (2000) Estimating the rate of
netic models of substitution rate variation
molecular evolution: incorporating non-con—
among lineages. Biol Lett 5:421–424
temporaneous sequences into maximum likeli—
33. Drummond AJ, Suchard MA (2010) Bayesian
hood phylogenies. Bioinformatics 16:395–399
random local clocks, or one rate to rule them
18. Shapiro B et al (2010) A Bayesian method to
all. BMC Biol 8:114
estimate unknown sequence ages in a phyloge—
34. Drummond AJ et al (2005) Bayesian coales—
netic context. Mol Biol Evol 28:879–887
cent inference of past population dynamics
24 Phylogenetic Analysis of Ancient DNA using
BEAST
241
from molecular sequences. Mol Biol Evol 38. Lartillot N, Philippe H (2006) Computing 22:1185–1192
Bayes factors using thermodynamic integra—
35. Minin VN, Bloomquist EW, Suchard MA (2008)
tion. Syst Biol 55:195–207
Smooth skyride through a rough skyline: 39. Xie W et al (2011) Improving marginal likeli-Bayesian coalescent-based inference of popula—
hood estimation for Bayesian phylogenetic
tion dynamics. Mol Biol Evol 25:1459–1471
model selection. Syst Biol 60:150–160
36. Ho SYW, Shapiro B (2011) Skyline-plot meth—
40. Yang Z, Rannala B (2006) Bayesian estimation
ods for estimating demographic history from
of species divergence times under a molecular
nucleotide sequences. Mol Ecol Resour
clock using multiple fossil calibrations with soft
11:423–434
bounds. Mol Biol Evol 23:212–226
37. Suchard MA, Weiss RE, Sinsheimer JS (2001)
41. Ho SYW (2007) Calibrating molecular esti—
Bayesian selection of continuous-time Markov
mates of substitution rates and divergence
chain evolutionary models. Mol Biol Evol
times in birds. J Avian Biol 38:409–414
18:1001–1013
sdfsdf
INDEX
A
Bleach .. ...................................8 , 9, 14, 15, 44, 45, 47, 52, 66, 67, 75, 77, 103
Abasic site ........................................................................ 1 47
Blocking lesion ............................................................ 3 , 145
Adaptor (or adapter)
Bone ......................................... 3 , 5, 8–10, 15, 18, 21, 22, 24, artifacts ..............................................1 53, 198, 204–206, 29, 31, 34, 37, 41, 43, 65, 87–90, 94–97, 102, 123,
209, 212, 215
127, 132, 134, 171, 172, 190
double_multiplex ............................................... 2 04, 205
Bottle gourd ........................................................... 7 3, 76, 77
ligation ......................................... 6 9, 151, 152, 156, 157, Bovine serum albumin (BSA) ..............................8, 112, 124, 161–162, 166, 169
126, 135–137
PCR ............................................ 1 50, 165, 172, 173, 181
Bst polymerase .......................... 1 46, 149, 152, 163, 166, 184
Aerosols ................................................1 4, 66, 114, 124, 131
Burn-in .................................................................... 2 35, 236
Africa ... .....................................................1 02, 103, 107, 175
Agarose. ..............................5 3, 105, 113, 115, 116, 127, 131, C
135, 138, 184, 190, 193
Carrier DNA ..............................................6 , 8, 10, 117, 139
Alignment ................................. 5 4, 194, 206, 209, 212–214, Cetyl trimethyl ammonium bromide
216–221, 224, 225, 230–233
(CTAB) ..................................................... 72–75, 77
Aliquot .................................1 9, 24, 39–41, 95, 96, 112, 118, Chaotropic
123, 124, 127, 130, 149
non- ....................................................................... 97, 98
Amino acid racemization .....................................................5
Chimpanzee ............................................................ 1 01–109
Amplicon ................................. 1 21, 122, 124, 128–131, 164, Chitinous ..................................................................... 4 3, 45
167, 178, 181, 186
Chloroform .......................................... 1 3–19, 44, 46, 48, 52, Archaeological ....................................................... 6 9, 71, 72
58–60, 72–74, 76, 77, 82–84, 87
Arthropod .............................................................. 4 5, 94, 98
Cleanroom ....................................................... 1 44, 147, 152
Artifact ............................................ 1 12, 153, 157, 164, 181, Clonal sequence ............................................................... 1 07
198, 201, 204–206, 209, 212, 215, 223, 224
Cloning .............................................. 2 , 5, 6, 53, 89, 90, 105, Authentication
111–118, 128, 171, 193
authentic DNA .............................................. 4 , 123, 190
ClustalW ........................................................................ 1 05
authenticity ............................... 5 , 90, 105, 112, 145, 194
Color-space ..................................................................... 2 23
B
Columns ...................................2 2–27, 31, 34, 44, 46, 47, 58, 61, 66–69, 98, 139, 145, 148–150, 161, 162, 165,
Barcode
184, 186, 187, 201, 202, 219, 233
barcoded ............. 1 34, 144, 155–170, 172–174, 190, 200
Concentrator(s) ..................................................... 15, 16, 48
barcoding ................................... 1 38, 155–157, 165, 168, Contaminant(s) ....................................... 3–9, 18, 19, 27, 45, 172, 173, 200, 201
55, 62, 88, 89, 99, 106, 112, 117, 118, 178, 198, 213,
Base-modifications .......................................2 , 144, 145, 178
217–220
Bayesian .......................................... 3 2, 33, 35, 230–235, 238
Contamination
BEAST ................................................................... 2 29–239
contaminated .....................................3 –5, 7–10, 22, 118, BioEdit .............................................................. 5 3, 105, 192
139, 140, 217
Biotin.. ...................................... 1 58, 159, 180, 181, 183, 185
criteria for authenticity ..................................................5
dUTP .................................................1 82, 185, 187, 191
cross-contamination ............................ 5 , 14, 59, 98, 106, Biotinylated ...................... 1 56, 158, 159, 180–184, 187, 191
109, 127, 136, 152, 157, 187
BlastSearch ...................................................................... 1 05
Coprolite ..................................................................... 3 7, 73
Beth Shapiro and Michael Hofreiter (eds.),
Ancient DNA: Methods and Protocols
, Methods in Molecular Biology, vol. 840, DOI 10.1007/978-1-61779-516-9, © Springer Science+Business Media, LLC 2012
243
244 ANCIENT DNA: METHODS AND PROTOCOLS
Index
Covaris ............................................................................ 1 82
extraction from paleofeces ............................... 3 7–42, 51
Criteria of authenticity ........................................................5
extraction via silica columns ........................................3 4
CTAB .
See
Cetyl trimethyl ammonium bromide (CTAB) phenol-chloroform extraction .................... 1 3–19, 73, 87