Read El monstruo subatómico Online

Authors: Isaac Asimov

Tags: #Ciencia, Ensayo

El monstruo subatómico (6 page)

¿Por qué es especial esa relatividad a la que tildamos de «especial»? Porque trata del caso especial del movimiento constante. La relatividad especial nos dice cuanto se necesita saber si se está tratando con un objeto que se mueve a velocidad constante y en una dirección fija con respecto a uno mismo.

Pero ¿qué ocurre si la velocidad o la dirección de un objeto (o ambas cosas) cambia con respecto a uno? En ese caso, la relatividad especial resulta insuficiente.

Estrictamente hablando, el movimiento nunca es constante. Existen siempre fuerzas que introducen cambios en la velocidad, la dirección, o ambas cosas, en el caso de cualquier objeto que se mueva. Por consiguiente, podríamos argumentar que la relatividad especial es siempre insuficiente.

Así es, pero esa insuficiencia puede ser lo bastante pequeña para no hacerle caso. Las partículas subatómicas que se mueven a enormes velocidades en distancias cortas no tienen tiempo de acelerarse demasiado, y se puede aplicar la relatividad especial.

Sin embargo, por lo general, en el Universo, que implica estrellas y planetas, la relatividad especial es totalmente insuficiente, puesto que allí hay que tratar con grandes aceleraciones y éstas son invariablemente producidas por la existencia de vastos y omnipresentes campos gravitatorios.

A nivel subatómico, la gravitación es tan excesivamente débil en comparación con otras fuerzas, que puede pasarse por alto. A nivel macroscópico de los objetos visibles, sin embargo, no puede pasarse por alto; en realidad, se puede pasar por alto todo
menos
la gravitación.

Cerca de la superficie de la Tierra, un objeto que cae se acelera mientras un cuerpo que asciende va más despacio, y ambos constituyen ejemplos de aceleraciones causadas enteramente por el avance a través del campo gravitatorio de la Tierra. La Luna viaja en una órbita alrededor de la Tierra, la Tierra alrededor del Sol, el Sol en torno del centro galáctico, la galaxia alrededor del centro del grupo local, y así sucesivamente, y en cada caso el movimiento orbital incluye una aceleración, puesto que existe un cambio continuo en la dirección del movimiento. Estas aceleraciones también son producidas como respuesta a los campos gravitatorios.

Por lo tanto, Einstein se dedicó a aplicar sus nociones de relatividad al caso del movimiento en
general,
tanto acelerado como constante; en otras palabras, a todos los movimientos auténticos del Universo. Cuando estuvo elaborado, esto constituyó la teoría general de la relatividad, o relatividad general. Para hacerlo, ante todo y principalmente tuvo que considerar la gravitación.

Existe un misterio acerca de la gravitación que se remonta a Newton. Según la formulación matemática de Newton de las leyes que gobiernan la forma en que los objetos se mueven, la fuerza de la atracción gravitatoria depende de la masa. La atracción de la Tierra sobre un objeto con una masa de 2 kilogramos es, exactamente, el doble de intensa que sobre un objeto que tenga una masa de sólo 1 kilogramo. Además, si la Tierra doblase su propia masa, lo atraería todo con una fuerza exactamente doble a como lo hace ahora. Por tanto, podemos medir la masa de la Tierra midiendo la intensidad de su atracción gravitatoria sobre un objeto dado; o bien podemos medir la masa de un objeto midiendo la fuerza ejercida sobre él por la Tierra.

Una masa determinada así es una «masa gravitatoria».

No obstante, Newton también elaboró las leyes del movimiento y alegó que cualquier fuerza ejercida sobre un objeto hace que dicho objeto sufra una aceleración. La cantidad de aceleración es inversamente proporcional a la masa del objeto. En otras palabras, si se ejerce la misma fuerza sobre dos objetos, uno con una masa de 2 kilogramos y el otro con una de 1 kilogramo, el objeto de 2 kilogramos se acelerará exactamente la mitad que el objeto de 1 kilogramo.

La resistencia a la aceleración se denomina inercia, y podemos afirmar que cuanto mayor sea la masa del objeto, mayor será su inercia; es decir, menos se acelerará bajo el impulso de una fuerza dada. Por lo tanto, podemos medir la masa de un objeto midiendo su inercia; es decir, midiendo la aceleración producida sobre el mismo por una fuerza dada.

Una masa determinada así es una «masa inerte».

Todas las masas que se han determinado han sido medidas o bien a través de los efectos gravitatorios, o bien por los efectos de la inercia. Cada una de estas formas se toma como válida y se consideran intercambiables, aunque las dos masas no tengan una relación
aparente.
A fin de cuentas, ¿no es posible que existan algunos objetos, hechos con ciertos materiales o mantenidos en ciertas condiciones, que presenten un intenso campo gravitatorio pero muy poca inercia, o viceversa? ¿Por qué no?

Sin embargo, cuando se mide la masa de un cuerpo gravitatoriamente, y se mide la masa del mismo cuerpo según la inercia, las dos medidas resultan ser iguales. No obstante, esto puede ser sólo apariencia. Pueden existir pequeñas diferencias, tan pequeñas que normalmente no se noten.

En 1909, un importante experimento en relación con esto fue realizado por un físico húngaro, Roland, barón Von Eotvos (el nombre se pronuncia «ut vush»).

Lo que hizo fue suspender una barra horizontal en una fibra delicada. En un extremo de la barra había una bola de un material, y en el otro extremo una bola de otro material. El Sol atrae ambas bolas y fuerza una aceleración en cada una de ellas. Si las bolas tienen una masa diferente por ejemplo 2 kilogramos y 1 kilogramo, entonces la masa de 2 kilogramos es atraída con el doble de fuerza que la masa de 1 kilogramo y cabria esperar que se acelerase con una fuerza dos veces superior. Sin embargo, la masa de 2 kilogramos posee el doble de inercia que la masa de 1 kilogramo. Por esta razón, la masa de 2 kilogramos se acelera sólo la mitad por kilogramo y acaba por acelerarse sólo con la fuerza de la masa de 1 kilogramo.

Si la masa inerte y la gravitatoria son exactamente iguales, en ese caso las dos bolas son aceleradas de un modo exactamente igual, y la barra horizontal puede ser atraída hacia el Sol en una cantidad inconmensurable, pero eso no la hace rotar. Si la masa inerte y la masa gravitatoria no son del todo iguales, una bola, se acelerará un poco más que la otra y la barra experimentará una leve fuerza giratoria. Esto retorcerá la fibra, la cual resiste hasta cierto punto la torsión y sólo se retorcerá en respuesta a una fuerza dada. Por la extensión de la torsión, es posible calcular la cantidad de diferencia entre la masa inerte y la masa gravitatoria.

La fibra empleada era muy delgada, por lo que su resistencia a la torsión era muy baja, y sin embargo la barra horizontal no presentó ninguna vuelta medible. Eótvós pudo calcular que una diferencia en las dos masas de 1 parte en 200.000.000 habría producido una torsión mensurable, de modo que ambas masas eran idénticas en cantidad dentro de ese límite.

(Desde entonces se han llevado a cabo versiones aún más delicadas del experimento de Eótvós, y ahora estamos seguros, a través de la observación directa, de que la masa inerte y la masa gravitatoria son idénticas en cantidad hasta 1 parte en 1.000.000.000.000.)

Einstein, al elaborar la relatividad general, comenzó por suponer que la masa inerte y la masa gravitatoria eran
exactamente
iguales, porque son, en esencia, la
misma cosa.
A esto se le denomina «el principio de equivalencia», y desempeña el mismo papel en la relatividad general que la constancia de la velocidad de la luz en la relatividad especial.

Incluso antes de Einstein era posible ver que la aceleración producida inercialmente puede provocar los mismos efectos que la gravitación. Cualquiera de nosotros puede experimentarlo.

Si, por ejemplo, se está en un ascensor que empieza a descender, ganando velocidad al principio, durante ese período de aceleración el suelo del ascensor se separa de los pies de uno, por así decirlo, de manera que se ejerce sobre él menos fuerza. Uno siente disminuir su peso, como si se estuviera yendo hacia arriba. La aceleración hacia abajo es equivalente a una disminución de la atracción gravitatoria.

Naturalmente, una vez que el ascensor alcanza una determinada velocidad y la mantiene, ya no hay más aceleración y uno siente su peso normal. Si el ascensor se está moviendo a una velocidad constante dada, y en una dirección constante, no se nota el efecto de la gravedad. En realidad, si se viaja por un vacío en una caja cerrada por completo, de modo que no se vea moverse el escenario, ni se sienta la vibración de la resistencia del aire, ni se oiga el silbido del viento, no existe ninguna manera de distinguir este movimiento constante de cualquier otro (a diferente velocidad o en una dirección diferente), o del estado de reposo. Ésta es una de las bases de la relatividad especial.

Dado que la Tierra viaja por un vacío a una velocidad casi constante y en una dirección casi constante (en distancias cortas), a la gente le resulta difícil diferenciar esta situación de la de la Tierra estando en reposo.

Por otra parte, si el ascensor siguiera acelerando hacia abajo y se moviera cada vez más aprisa, uno sentiría como si su peso hubiese disminuido de forma permanente. Si el ascensor acelerara hacia abajo en una proporción considerablemente importante, si cayera a la aceleración natural que la atracción gravitatoria le impondría («caída libre»), en este caso desaparecería toda sensación de peso. Uno se sentiría flotar.

Si el ascensor acelerase hacia abajo en una proporción más rápida que la asociada con la caída libre, se sentiría el equivalente de una atracción gravitatoria
hacia arriba, y
se encontraría que el techo desempeña para uno las funciones del suelo.

Naturalmente, no se puede esperar que un ascensor se acelere hacia abajo durante mucho tiempo. En primer lugar, se necesitaría un hueco de ascensor extraordinariamente largo para que éste pudiera seguir desplazándose hacia abajo, uno que tuviese años luz de longitud, sí queremos llevar las cosas al extremo. En segundo lugar, aunque se tuviese ese imposiblemente largo hueco de ascensor, un nivel de aceleración constante pronto haría que la velocidad se convirtiese en una fracción respetable de la velocidad de la luz. Eso introduciría efectos relativistas apreciables y complicaría las cosas.

Sin embargo, podemos imaginar otra situación. Si un objeto se encuentra en órbita alrededor de la Tierra, está, en efecto, cayendo constantemente hacia la Tierra con una aceleración impuesta por la atracción gravitatoria de la Tierra. No obstante, se está también moviendo horizontalmente en relación con la superficie de la Tierra y, puesto que la Tierra es esférica, esa superficie se curva alejándose del objeto que está cayendo. De ahí que el objeto esté siempre cayendo, pero nunca llegue a la superficie. Estará cayendo durante miles de millones de años, tal vez. Estará en perpetua caída libre.

Así, una nave espacial que se halle en órbita bordeando la Tierra, se mantiene en esa órbita gracias a la atracción gravitatoria de la Tierra, pero cualquier cosa en la nave espacial cae
con
ésta y experimenta una gravedad cero, igual que si se encontrase en un ascensor que estuviese cayendo perpetuamente. (En realidad, los astronautas sentirían la atracción gravitatoria de la nave espacial en sí y de cada uno, por no hablar de las atracciones de los otros planetas y de las estrellas distantes, pero se trataría de unas fuerzas pequeñas que serían por completo imperceptibles.) Ésa es la razón de que las personas que se encuentran en naves espaciales en órbita floten libremente.

Una vez más, la Tierra se halla sujeta a la atracción gravitatoria del Sol y que la mantiene en órbita alrededor del Sol. Igual que la Luna. La Tierra y la Luna caen juntas, perpetuamente, hacia el Sol y, al encontrarse en caída libre, no sienten la atracción del Sol en lo que se refiere a su relación mutua.

Sin embargo, la Tierra tiene una atracción gravitatoria por sí misma que, aunque es mucho más débil que la del Sol, es bastante fuerte. Por tanto, la Luna, en respuesta a la atracción gravitatoria de la Tierra, gira alrededor de ésta, exactamente como si el Sol no existiese. (Realmente, dado que la Luna se halla un poco apartada de la Tierra, y a veces está un poco más cerca del Sol que la Tierra, y a veces un poco más lejos, la atracción solar es un poco diferente en los dos mundos, y esto introduce ciertos «efectos de marea» menores que ponen de manifiesto la realidad de la existencia del Sol.)

De nuevo, nos encontramos sobre la Tierra y sentimos sólo la atracción de ésta y no la del Sol, puesto que nosotros y la Tierra compartimos la caída libre respecto del Sol, y puesto que el efecto de marea que el Sol ejerce sobre nosotros es demasiado pequeño para que lo percibamos o seamos conscientes del mismo.

A continuación, supongamos que nos encontramos en un ascensor que está acelerando hacia arriba. Esto sucede en un grado muy pequeño cada vez que nos hallamos en un ascensor que se mueve hacia arriba desde el estado de reposo. Si se trata de un ascensor rápido, cuando se pone en marcha hay un momento de aceleración apreciable durante el cual el suelo se mueve hacia arriba, hacia nosotros, y sentimos una presión hacia abajo. La aceleración hacia arriba produce la sensación de una mayor atracción gravitatoria.

También en este caso la sensación es muy breve, puesto que el ascensor alcanza su velocidad máxima y luego la mantiene durante el transcurso de su viaje hasta que llega el momento de detenerse, cuando momentáneamente reduce su velocidad y se tiene la sensación de que la atracción gravitatoria decrece. Mientras el ascensor se encontraba a la velocidad máxima, sin acelerar ni ir más despacio, uno se sentía por completo normal.

Bueno, supongamos que nos encontramos en el hueco de un ascensor de una longitud de años luz y que hay allí un ascensor cerrado que podría acelerarse con suavidad hacia arriba a través de un vacío durante un período indefinido, yendo cada vez más deprisa. Se sentiría indefinidamente una mayor atracción gravitatoria. (Los astronautas tienen esta sensación durante un período de tiempo cuando un cohete acelera hacia arriba y sienten una incómoda presión hacia abajo. Existe un límite respecto a lo intensa que puede permitirse que sea una aceleración, o la sensación adicional de atracción gravitatoria puede hacerse lo bastante fuerte para que la presión lleve los astronautas a la muerte.)

Pero supongamos que no existe la Tierra, que se trata sólo de un ascensor que acelera hacia arriba. Si el índice de aceleración estuviera en el nivel apropiado, se sentiría el equivalente de una atracción gravitatoria igual que en la superficie de la Tierra. Se podría andar allí con perfecta comodidad e imaginarnos que el ascensor descansa inmóvil en la superficie de la Tierra.

Other books

Don't Blame the Devil by Pat G'Orge-Walker
Kicked Out by Beth Goobie
Chasing Power (Hidden Talents) by Pearson, Genevieve
Everything to Gain and a Secret Affair by Barbara Taylor Bradford
Vicious by Schwab, V. E.
The Scarlet Pimpernel by Baroness Emmuska Orczy
The Change: Episode one by Angela White
The Singing of the Dead by Dana Stabenow
Lost Nation by Jeffrey Lent